login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157924
a(n) = 98*n - 1.
2
97, 195, 293, 391, 489, 587, 685, 783, 881, 979, 1077, 1175, 1273, 1371, 1469, 1567, 1665, 1763, 1861, 1959, 2057, 2155, 2253, 2351, 2449, 2547, 2645, 2743, 2841, 2939, 3037, 3135, 3233, 3331, 3429, 3527, 3625, 3723, 3821, 3919, 4017, 4115, 4213, 4311
OFFSET
1,1
COMMENTS
The identity (98n - 1)^2 - (49n^2 - n)*14^2 = 1 can be written as a(n)^2 - A157923(n)*14^2 = 1. - Vincenzo Librandi, Feb 05 2012
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 14 in the first table at p. 85, case d(t) = t*(7^2*t-1)).
FORMULA
G.f.: x*(x+97)/(x-1)^2. - Vincenzo Librandi, Feb 05 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 05 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {97, 195}, 50] (* Vincenzo Librandi, Feb 05 2012 *)
98*Range[50]-1 (* Harvey P. Dale, Mar 14 2016 *)
PROG
(Magma) I:=[97, 195]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 05 2012
(PARI) for(n=1, 40, print1(98*n - 1", ")); \\ Vincenzo Librandi, Feb 05 2012
CROSSREFS
Cf. A157923.
Sequence in context: A142398 A133870 A060329 * A323796 A044429 A044810
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 09 2009
STATUS
approved