login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A287826
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 2.
0
1, 10, 84, 708, 5968, 50308, 424080, 3574860, 30134944, 254028100, 2141377008, 18051134892, 152165391616, 1282706408548, 10812811724688, 91148603152524, 768354066287200, 6476983198439812, 54598931916359472, 460251829451302764, 3879778213203474880
OFFSET
0,2
FORMULA
a(n) = 10*a(n-1) - 13*a(n-2) - 2a(n-3), a(0)=1, a(1)=10, a(2)=84.
G.f.: (1 - 3 x^2)/(1 - 10 x + 13 x^2 + 2 x^3).
MATHEMATICA
LinearRecurrence[{10, -13, -2}, {1, 10, 84}, 40]
PROG
(Python)
def a(n):
.if n in [0, 1, 2]:
..return [1, 10, 84][n]
.return 10*a(n-1)-13*a(n-2)-2*a(n-3)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 02 2017
STATUS
approved