login
A287831
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 8.
7
1, 10, 96, 924, 8892, 85572, 823500, 7924932, 76265388, 733938084, 7063035084, 67970944260, 654116708844, 6294876045156, 60578584659468, 582976518206148, 5610260171812140, 53990200655546148, 519573366930788172, 5000101506310370436, 48118353758378062956
OFFSET
0,2
COMMENTS
In general, the number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 5+k for k in {0,1,2,3,4} is given by a(n) = 9*a(n-1) + 2*k*a(n-2), a(0)=1, a(1)=10.
FORMULA
a(n) = 9*a(n-1) + 6*a(n-2), a(0)=1, a(1)=10.
G.f.: (-1 - x)/(-1 + 9*x + 6*x^2).
a(n) = ((1 - 11/sqrt(105))/2)*((9 - sqrt(105))/2)^n + ((1 + 11/sqrt(105))/2)*((9 + sqrt(105))/2)^n.
MATHEMATICA
LinearRecurrence[{9, 6}, {1, 10}, 30]
PROG
(Python)
def a(n):
.if n in [0, 1]:
..return [1, 10][n]
.return 9*a(n-1)+6*a(n-2)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 02 2017
STATUS
approved