login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308523
Number of essentially simple rooted toroidal triangulations with n vertices.
3
0, 1, 10, 97, 932, 8916, 85090, 810846, 7719048, 73431340, 698187400, 6635738209, 63047912372, 598885073788, 5687581936284, 54005562798252, 512728901004816, 4867263839614716, 46199494669833400, 438481077306427924, 4161316466910824272
OFFSET
0,3
LINKS
Nicolas Bonichon, Éric Fusy, Benjamin Lévêque, A bijection for essentially 3-connected toroidal maps, arXiv:1907.04016 [math.CO], 2019.
Éric Fusy, Benjamin Lévêque, Orientations and bijections for toroidal maps with prescribed face-degrees and essential girth, arXiv:1807.00522 [math.CO], 2018. See Proposition 25 p. 37.
FORMULA
G.f.: A/(1-3*A)^2 where A=x(1+A)^4 is the g.f. of A002293.
From Vaclav Kotesovec, Jun 25 2019: (Start)
Recurrence: 81*(n-1)*(3*n - 2)*(3*n - 1)*(24*n - 37)*a(n) = 24*(13824*n^4 - 59328*n^3 + 92832*n^2 - 62278*n + 14653)*a(n-1) - 2048*(2*n - 3)*(4*n - 7)*(4*n - 5)*(24*n - 13)*a(n-2).
a(n) ~ 2^(8*n - 3) / 3^(3*n). (End)
MAPLE
n:=20:
dev_A := series(RootOf(A-x*(1+A)^4, A), x = 0, n+1):
seq(coeff(series(subs(A=dev_A, A/(1-3*A)^2), x, n+1), x, k), k=0..n);
MATHEMATICA
terms = 21;
A[_] = 0; Do[A[x_] = x (1 + A[x])^4 + O[x]^terms, terms];
CoefficientList[A[x]/(1 - 3 A[x])^2, x] (* Jean-François Alcover, Jun 17 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Nicolas Bonichon, Jun 05 2019
STATUS
approved