login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308524
Number of essentially 3-connected rooted toroidal maps with n edges.
3
0, 0, 1, 2, 11, 40, 166, 658, 2647, 10592, 42446, 169972, 680670, 2725320, 10910992, 43678882, 174843151, 699839680, 2801078662, 11210671612, 44866276906, 179552951440, 718539964132, 2875389341332, 11506176209206, 46042099714240, 184234059839116, 737184620655368
OFFSET
0,4
LINKS
Nicolas Bonichon, Éric Fusy, Benjamin Lévêque, A bijection for essentially 3-connected toroidal maps, arXiv:1907.04016 [math.CO], 2019.
FORMULA
G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2.
G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - Vaclav Kotesovec, Jun 25 2019
a(n) ~ 2^(2*n - 3) / 3. - Vaclav Kotesovec, Jun 25 2019
MAPLE
dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);
seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);
# second Maple program:
a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],
((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)
-48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))
/((6*(n-1))*(n-5)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 07 2019
MATHEMATICA
CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* Vaclav Kotesovec, Jun 25 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Nicolas Bonichon, Jun 05 2019
STATUS
approved