login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of essentially 3-connected rooted toroidal maps with n edges.
3

%I #20 Sep 03 2019 18:40:04

%S 0,0,1,2,11,40,166,658,2647,10592,42446,169972,680670,2725320,

%T 10910992,43678882,174843151,699839680,2801078662,11210671612,

%U 44866276906,179552951440,718539964132,2875389341332,11506176209206,46042099714240,184234059839116,737184620655368

%N Number of essentially 3-connected rooted toroidal maps with n edges.

%H Michael De Vlieger, <a href="/A308524/b308524.txt">Table of n, a(n) for n = 0..1000</a>

%H Nicolas Bonichon, Éric Fusy, Benjamin Lévêque, <a href="https://arxiv.org/abs/1907.04016">A bijection for essentially 3-connected toroidal maps</a>, arXiv:1907.04016 [math.CO], 2019.

%F G.f.: A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A)) where A=x*(1+A)^2.

%F G.f.: x*(1 + 8*x + (2*x - 1)*sqrt(1 - 4*x))/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)). - _Vaclav Kotesovec_, Jun 25 2019

%F a(n) ~ 2^(2*n - 3) / 3. - _Vaclav Kotesovec_, Jun 25 2019

%p dev_A := 0; n := 20; dev_A := series(RootOf(A-x*(1+A)^2, A), x = 0, n+1);

%p seq(coeff(series(subs(A = dev_A, A^2*(1+A)/((1+2*A)*(1-A)^2*(1+3*A))), x, n+1), x, k), k = 0 .. n);

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<6, [0, 0, 1, 2, 11, 40][n+1],

%p ((37*n^2-258*n+401)*a(n-1)-6*(2*n^2-25*n+88)*a(n-2)

%p -48*(3*n^2-23*n+45)*a(n-3)-32*(n-4)*(2*n-7)*a(n-4))

%p /((6*(n-1))*(n-5)))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 07 2019

%t CoefficientList[Series[x*(1 + 8*x + (2*x - 1)*Sqrt[1 - 4*x])/(2*(2 + x)*(1 - 4*x)*(3 + 4*x)), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Jun 25 2019 *)

%Y Cf. A308523, A308526, A289208, A006422.

%K nonn

%O 0,4

%A _Nicolas Bonichon_, Jun 05 2019