login
A287819
Number of nonary sequences of length n such that no two consecutive terms have distance 4.
31
1, 9, 71, 561, 4433, 35031, 276827, 2187585, 17287073, 136608591, 1079529611, 8530826457, 67413620993, 532726379847, 4209793089371, 33267280400913, 262889866978817, 2077449112980255, 16416740845208075, 129730917736941417, 1025179795159015841
OFFSET
0,2
FORMULA
For n>2, a(n) = 8*a(n-1) + a(n-2) - 14*a(n-3), a(0)=1, a(1)=9, a(2)=71, a(3)=561.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 8 x - x^2 + 14 x^3).
EXAMPLE
For n=2 the a(2) = 81 - 10 = 71 sequences contain every combination except these ten: 04,40,15,51,26,62,37,73,48,84.
MATHEMATICA
LinearRecurrence[{8, 1, -14}, {1, 9, 71, 561}, 40]
PROG
(Python)
def a(n):
if n in [0, 1, 2, 3]:
return [1, 9, 71, 561][n]
return 8*a(n-1)+a(n-2)-14*a(n-3)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 02 2017
STATUS
approved