OFFSET
0,2
COMMENTS
[Empirical] a(base,n)=a(base-1,n)+3^(n-1) for base>=n; a(base,n)=a(base-1,n)+3^(n-1)-2 when base=n-1
a(n) is the number of quaternary sequences of length n such that no two adjacent terms differ by exactly 1. - David Nacin, May 31 2017
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
Index entries for linear recurrences with constant coefficients, signature (3,-1).
FORMULA
G.f.: (1+x-x^2)/(1-3*x+x^2). - Bruno Berselli, Jun 28 2012
From David Nacin, May 31 2017: (Start)
For n>2, a(n) = 3*a(n-1)-a(n-2), a(0)=1, a(1)=4, a(2)=10.
For n>0, a(n) = (1-1/sqrt(5))(3/2-sqrt(5)/2)^n + (1+1/sqrt(5))(3/2+sqrt(5)/2)^n. (End)
MATHEMATICA
Join[{1}, Table[2*Fibonacci[2*n+1], {n, 1, 1001}]] (* Vincenzo Librandi, Jun 28 2012 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>1)+($[i+1]`-$[i]`>1))
(Magma) [1] cat [(2*Fibonacci(2*n+1)): n in [1..30]]; // Vincenzo Librandi, Jun 28 2012
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
R. H. Hardin, Dec 26 2006
STATUS
approved