login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126358
Number of base 4 n-digit numbers with adjacent digits differing by one or less.
37
1, 4, 10, 26, 68, 178, 466, 1220, 3194, 8362, 21892, 57314, 150050, 392836, 1028458, 2692538, 7049156, 18454930, 48315634, 126491972, 331160282, 866988874, 2269806340, 5942430146, 15557484098, 40730022148, 106632582346, 279167724890, 730870592324
OFFSET
0,2
COMMENTS
[Empirical] a(base,n)=a(base-1,n)+3^(n-1) for base>=n; a(base,n)=a(base-1,n)+3^(n-1)-2 when base=n-1
a(n) is the number of quaternary sequences of length n such that no two adjacent terms differ by exactly 1. - David Nacin, May 31 2017
LINKS
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
FORMULA
a(n) = 2*F(2*n+1) = A052995(n+1) for n>0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: (1+x-x^2)/(1-3*x+x^2). - Bruno Berselli, Jun 28 2012
From David Nacin, May 31 2017: (Start)
For n>2, a(n) = 3*a(n-1)-a(n-2), a(0)=1, a(1)=4, a(2)=10.
For n>0, a(n) = (1-1/sqrt(5))(3/2-sqrt(5)/2)^n + (1+1/sqrt(5))(3/2+sqrt(5)/2)^n. (End)
MATHEMATICA
Join[{1}, Table[2*Fibonacci[2*n+1], {n, 1, 1001}]] (* Vincenzo Librandi, Jun 28 2012 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>1)+($[i+1]`-$[i]`>1))
(Magma) [1] cat [(2*Fibonacci(2*n+1)): n in [1..30]]; // Vincenzo Librandi, Jun 28 2012
CROSSREFS
Sequence in context: A277236 A218208 A207095 * A200051 A200663 A200464
KEYWORD
nonn,base,easy
AUTHOR
R. H. Hardin, Dec 26 2006
STATUS
approved