OFFSET
0,2
COMMENTS
To generalize to strings composed of symbols from the circular list [1,2,3,...2m], m>=2, with no runs of 2 or more allowed for symbols 1,3,5,...2m-1, use the same recurrence given below with initial values a(1)=2m, a(2)=5m, see A277237 for the m=3 case.
LINKS
FORMULA
G.f.: (1+3*x+2*x^2)/(1-x-4*x^2).
For n>=3, the recurrence is a(n) = a(n-1) + 4*a(n-2), a(1)=4, a(2)=10.
a(n) = ((13+3*sqrt(17))*z1^n-(13-3*sqrt(17))*z2^n)/(4*sqrt(17)) where z1=(1+sqrt(17))/2 and z2=(1-sqrt(17))/2.
EXAMPLE
For n=3 the 26 strings are 121, 122, 123, 141, 143, 144, 212, 214, 221, 222, 223, 232, 234, 321, 322, 323, 341, 343, 344, 412, 414, 432, 434, 441, 443, 444.
For n=4 the 66 strings are 1212, 1214, 1221, 1222, 1223, 1232, 1234, 1412, 1414, 1432, 1434, 1441, 1443, 1444, 2121, 2122, 2123, 2141, 2143, 2144, 2212, 2214, 2221, 2222, 2223, 2232, 2234, 2321, 2322, 2323, 2341, 2343, 2344, 3212, 3214, 3221, 3222, 3223, 3232, 3234, 3412, 3414, 3432, 3434, 3441, 3443, 3444, 4121, 4122, 4123, 4141, 4143, 4144, 4321, 4322, 4323, 4341, 4343, 4344, 4412, 4414, 4432, 4434, 4441, 4443, 4444.
MATHEMATICA
CoefficientList[Series[(1 + 3 x + 2 x^2)/(1 - x - 4 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Oct 07 2016 *)
PROG
(PARI) Vec((1+3*z+2*z^2)/(1-z-4*z^2) + O(z^40)) \\ Michel Marcus, Oct 06 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefan Hollos, Oct 06 2016
STATUS
approved