OFFSET
0,1
COMMENTS
This is the value of one of Ramanujan's series: 1 - 5*(1/2)^5 + 9*(1*3/(2*4))^5 -13*(1*3*5/(2*4*6))^5 + - ... . See the Hardy reference p.7. eq. (1.4) and pp. 105-106. For the partial sums see A278140.
REFERENCES
G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105-106, 111.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
Equals Sum_{k=0..n} (1+4*k)*(binomial(-1/2,k))^5 = Sum_{k=0..n} (-1)^k*(1+4*k)*((2*k-1)!!/(2*k)!!)^5. The double factorials are given in A001147 and A000165 with (-1)!! := 1.
From Amiram Eldar, Jul 13 2023: (Start)
Equals (Gamma(1/4)/Pi)^4/2.
Equals A263809/Pi. (End)
EXAMPLE
2/Gamma(3/4)^4 = 0.88694116857811540541152...
MATHEMATICA
RealDigits[2/(Gamma[3/4])^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
PROG
(PARI) 2/gamma(3/4)^4 \\ Michel Marcus, Nov 13 2016
(Magma) SetDefaultRealField(RealField(100)); 2/(Gamma(3/4))^4; // G. C. Greubel, Oct 26 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Nov 13 2016
STATUS
approved