login
A263809
Decimal expansion of C_{1/2}, a constant related to Kolmogorov's inequalities.
1
2, 7, 8, 6, 4, 0, 7, 8, 5, 9, 3, 7, 1, 3, 5, 3, 7, 1, 8, 3, 6, 8, 4, 9, 2, 5, 2, 0, 6, 5, 0, 7, 3, 6, 4, 8, 5, 3, 1, 4, 9, 6, 2, 4, 3, 5, 0, 3, 1, 2, 3, 5, 7, 5, 7, 9, 4, 8, 5, 6, 3, 2, 6, 3, 7, 6, 0, 6, 4, 8, 0, 2, 5, 1, 5, 0, 0, 7, 3, 2, 6, 1, 3, 5, 7, 2, 9, 4, 6, 5, 9, 7, 1, 5, 6, 1, 9, 1, 1, 1, 9, 9, 3, 1, 3
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.
LINKS
Burgess Davis, On Kolmogorov's Inequalities, Transactions of the American Mathematical Society Vol. 222 (Sep., 1976), pp. 179-192.
FORMULA
C_{1/2} = gamma(1/4)^2/(Pi*gamma(3/4)^2).
Equals (1/Pi^2)*(integral_{0..Pi} sqrt(csc(t)) dt)^2.
Also equals (8/Pi^2)*A093341^2.
EXAMPLE
2.78640785937135371836849252065073648531496243503123575794856326376...
MATHEMATICA
RealDigits[Gamma[1/4]^2/(Pi*Gamma[3/4]^2), 10, 105] // First
PROG
(PARI) gamma(1/4)^2/(Pi*gamma(3/4)^2) \\ Michel Marcus, Oct 27 2015
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved