login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352495
Decimal expansion of the pearl of the Riemann zeta function.
1
1, 0, 0, 0, 0, 2, 7, 8, 5, 7, 6, 3, 3, 0, 6, 6, 4, 4, 0, 7, 3, 0, 2, 1, 5, 0, 9, 1, 8, 5, 7, 3, 6, 2, 1, 7, 7, 8, 2, 9, 7, 1, 0, 0, 9, 1, 4, 0, 5, 3, 3, 3, 0, 4, 7, 8, 7, 9, 7, 3, 1, 9, 2, 8, 4, 5, 8, 6, 4, 7, 3, 5, 4, 1, 6, 6, 6, 1, 2, 9, 3, 5, 2, 6, 5, 0, 0
OFFSET
1,6
COMMENTS
Let Z be the Riemann zeta function, and consider its sequence of nontrivial zeros with nonnegative imaginary part, {r(m)}, so that for every m >= 1, Z(r(m)) = 0, 0 <= Re(r(m)) <= 1, and 0 <= Im(r(m)), and for every k > m, Im(r(m)) < Im(r(k)), or Im(r(m)) = Im(r(k)) and Re(r(m)) < Re(r(k)).
Let i be the imaginary unit, and define the sequence {b(m)} as follows: b(1) = Z((r(1)-1/2)/i), b(2) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i)), b(3) = Z((r(1)-1/2)/i + Z((r(2)-1/2)/i + Z((r(3)-1/2)/i))), and so on. If this sequence converges, we call its limit the pearl of Z.
Suppose that the Riemann Hypothesis is true. Then the sequence {b(m)} is real. On the interval [2,oo), Z is decreasing, positive, and bounded above by 2, so {b(2*m-1)} is decreasing and bounded below by 0, and hence, it converges to a real value, say A. Moreover, {b(2*m)} is increasing and b(2*m) <= b(2*m+1), and by repeated application of the mean value theorem, b(2*m+1) - b(2*m) <= Z(Im(r(2*m+1))) * |Z'(Im(r(1)))|^(2*m) <= 2*(4/100000)^(2*m), so {b(2*m)} also converges to A, and {a(n)} is the decimal expansion of this value.
We don't know if the existence of a real pearl of Z implies the Riemann Hypothesis.
More generally, the definition of pearl works for Dirichlet L-functions, giving rise to analogous constants, not necessarily real.
LINKS
Eduard Roure Perdices, Table of n, a(n) for n = 1..5000
EXAMPLE
1.00002785763306644073021509185736217782971009140533304787973192845864...
MATHEMATICA
RealDigits[Re[res = Fold[Zeta[#1 + #2] &, 0, Reverse[(ZetaZero[Range[10]] - 1/2)/I]]], 10, 100][[1]]
KEYWORD
nonn,cons
AUTHOR
STATUS
approved