login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287822 Number T(n,k) of Dyck paths of semilength n such that the maximal number of peaks per level equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 7, 1, 1, 0, 13, 18, 9, 1, 1, 0, 31, 59, 29, 11, 1, 1, 0, 71, 193, 112, 38, 13, 1, 1, 0, 181, 616, 405, 163, 48, 15, 1, 1, 0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1, 0, 1111, 6244, 5565, 2571, 925, 288, 71, 19, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

T(n,k) is defined for all n,k >= 0.  The triangle contains only the terms for k<=n. T(n,k) = 0 if k>n.

LINKS

Alois P. Heinz, Rows n = 0..100, flattened

Wikipedia, Counting lattice paths

FORMULA

T(n,k) = A287847(n,k) - A287847(n,k-1) for k>0, T(n,0) = A000007(n).

EXAMPLE

. T(4,1) = 5:                                             /\

.                  /\        /\      /\        /\        /  \

.                 /  \    /\/  \    /  \      /  \/\    /    \

.              /\/    \  /      \  /    \/\  /      \  /      \ .

.

. T(4,2) = 7:       /\      /\        /\/\    /\        /\  /\

.              /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /  \/  \ .

.

.                          /\/\

.               /\/\      /    \

.              /    \/\  /      \  .

.

. T(4,3) = 1:   /\/\/\

.              /      \  .

.

. T(4,4) = 1:  /\/\/\/\  .

.

Triangle T(n,k) begins:

  1;

  0,   1;

  0,   1,    1;

  0,   3,    1,    1;

  0,   5,    7,    1,   1;

  0,  13,   18,    9,   1,   1;

  0,  31,   59,   29,  11,   1,  1;

  0,  71,  193,  112,  38,  13,  1,  1;

  0, 181,  616,  405, 163,  48, 15,  1, 1;

  0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1;

MAPLE

b:= proc(n, k, j) option remember; `if`(j=n, 1, add(

      b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),

       m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))

    end:

A:= proc(n, k) option remember; `if`(n=0, 1, (m->

      add(b(n, m, j), j=1..m))(min(n, k)))

    end:

T:= (n, k)-> A(n, k)- `if`(k=0, 0, A(n, k-1)):

seq(seq(T(n, k), k=0..n), n=0..12);

MATHEMATICA

b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];

A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]];

T[n_, k_] := A[n, k] - If[k==0, 0, A[n, k - 1]];

Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, May 25 2018, translated from Maple *)

CROSSREFS

Columns k=0-10 give: A000007, A281874 (for n>0), A288743, A288744, A288745, A288746, A288747, A288748, A288749, A288750, A288751.

Row sums give A000108.

T(2n,n) gives A287860.

Cf. A287847.

Sequence in context: A191582 A130160 A288108 * A162169 A216954 A124801

Adjacent sequences:  A287819 A287820 A287821 * A287823 A287824 A287825

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jun 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 11:44 EDT 2020. Contains 336439 sequences. (Running on oeis4.)