OFFSET
1,4
COMMENTS
Some terms of A065108 are a product of Fibonacci numbers in more than one way. For example, 8 is a product of Fibonacci numbers in more than one way as 8 = 2 * 2 * 2 and both 8 and 2 are Fibonacci numbers. Therefore, 'at least' is used in the name.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
8 = 2 * 2 * 2 are all ways to write A065108(7) = 8 as a product of Fibonacci numbers. 8 has one factor, the least number of all such factorizations. Therefore, a(7) = 1.
81 = 3^4. 81 isn't a Fibonacci number. 3^4 is the only factorization of A065108(43) = 81 into Fibonacci numbers and has four factors 3. Therefore, a(43) = 4.
144 = 2 * 3 * 3 * 8 = 2 * 2 * 2 * 2 * 3 * 3 are all ways to write A065108(62) = 144 as a product of Fibonacci numbers. 144 has one factor, the least number of all such factorizations. Therefore, a(62) = 1.
CROSSREFS
KEYWORD
AUTHOR
David A. Corneth, Jun 01 2017
EXTENSIONS
Name clarified by Chai Wah Wu, Jun 02 2017
STATUS
approved