login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124830
Number of distinct prime factors of A055932(n).
5
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 3, 2, 4, 2, 3, 1, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 2, 1, 3, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 2, 1, 4, 3, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 4, 3, 2, 1, 4, 3, 3, 2, 5, 3, 3, 4, 2, 3, 3, 2, 4, 3, 2, 4, 3, 4, 2, 3, 3, 4, 3, 2, 3, 1, 4
OFFSET
1,4
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000 (First 1000 terms from G. C. Greubel.)
FORMULA
a(n) = A001221(A055932(n)).
MATHEMATICA
PrimeNu /@ Select[Range[4000], ! MemberQ[Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #, 0] &] (* Michael De Vlieger, Feb 02 2017 *)
A055932[n_] := Module[{f = Transpose[FactorInteger[n]][[1]]}, f == {1} || f == Prime[Range[Length[f]]]]; PrimeNu[Select[Range[2000], A055932]] (* G. C. Greubel, May 11 2017 *)
PROG
(Python)
from sympy import nextprime, primefactors
def a053669(n):
p = 2
while True:
if n%p!=0: return p
else: p=nextprime(p)
def ok(n): return True if n==1 else a053669(n)>max(primefactors(n))
print([len(primefactors(n)) for n in range(1, 10001) if ok(n)]) # Indranil Ghosh, May 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved