login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124829
Table of exponents of prime factorizations in A055932.
6
1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 1, 3, 2, 1, 1, 6, 3, 2, 1, 2, 1, 5, 1, 2, 3, 3, 1, 1, 7, 4, 2, 1, 1, 2, 1, 4, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 1, 3, 1, 5, 2, 2, 1, 2, 2, 4, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 5, 1, 1, 1, 5, 9, 2, 3, 1, 6, 2, 3, 1, 2, 1, 2, 1, 1, 3, 4
OFFSET
1,2
COMMENTS
This is an enumeration of all compositions. This sequence contains all finite sequences of positive integers.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10382 (rows 1 <= n <= 2500).
FORMULA
A055932(n) = Product_k Prime(k)^T(n,k).
EXAMPLE
From Michael De Vlieger, Feb 06 2020: (Start)
Table begins:
n A055932(n+1) row n
---------------------
1 2 1;
2 4 2;
3 6 1, 1;
4 8 3;
5 12 2, 1;
6 16 4;
7 18 1, 2;
8 24 3, 1;
9 30 1, 1, 1;
10 32 5;
11 36 2, 2;
12 48 4, 1;
13 54 1, 3;
14 60 2, 1, 1;
15 64 6;
... (End)
MATHEMATICA
Map[FactorInteger[#][[All, -1]] &, Select[Range[10^3], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] // Flatten (* Michael De Vlieger, Feb 06 2020 *)
CROSSREFS
Cf. A055932, A124830 (row lengths), A124831 (row sums), A124832, A066099.
Sequence in context: A355534 A296150 A079673 * A093394 A094363 A124832
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved