login
A079673
Consider pairs (r,s) such that the polynomial (x^r+1) divides (x^s+1) and 1 <= r < s. This sequence gives the r values; A079581 gives the s values.
3
1, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 1, 3, 5, 1, 2, 6, 1, 4, 1, 3, 7, 2, 1, 8, 1, 5, 2, 1, 3, 9, 4, 1, 2, 6, 10, 1, 1, 3, 11, 2, 1, 5, 7, 4, 12, 1, 2, 1, 3, 13, 8, 1, 2, 6, 14, 1, 4, 1, 3, 5, 9, 15, 2, 1, 16, 1, 7, 2, 10, 1, 3, 17, 4, 1, 2, 6, 18, 1, 5, 11, 8, 1, 3, 19, 2, 1, 4, 12, 20, 1, 2, 1, 3, 7, 9, 21, 1
OFFSET
1,3
COMMENTS
(x^r+1) divides (x^s+1) iff s/r is an odd integer.
EXAMPLE
a(5)=1 and a(6)=3 because A079581(5)=A079581(6)=9 and (x^1+1) and (x^3+1) divide (x^9+1).
CROSSREFS
KEYWORD
nonn
AUTHOR
Jose R. Brox (tautocrona(AT)terra.es), Jan 25 2003
EXTENSIONS
Edited by Don Reble, Jun 12 2003
STATUS
approved