login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094363
Expansion of (eta(q) * eta(q^39)) / (eta(q^3) * eta(q^13)) in powers of q.
1
1, -1, -1, 1, -1, 0, 2, -1, -1, 3, -2, -1, 4, -2, -3, 4, -3, -3, 8, -4, -5, 9, -4, -6, 13, -6, -7, 14, -10, -9, 20, -9, -12, 24, -13, -13, 32, -16, -19, 39, -23, -24, 50, -26, -27, 60, -35, -34, 78, -41, -42, 91, -49, -54, 111, -60, -65, 138, -73, -78, 167, -84, -95, 199, -107, -111, 236, -128, -135, 282, -147, -159, 338
OFFSET
1,7
FORMULA
Euler transform of period 39 sequence [ -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 0, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, 0, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) = f(1/A(x), 1/A(x^2)) where f(u, v)=u^3 + v^3 + 2*u*v*(u + v) - u^2*v^2 - u*v.
G.f.: x * Product_{k>0} (1 - x^k) * (1 - x^(3*9k)) / ((1 - x^(3*k)) * (1 - x^(13*k))).
Convolution inverse of A094362.
EXAMPLE
q - q^2 - q^3 + q^4 - q^5 + 2*q^7 - q^8 - q^9 + 3*q^10 - 2*q^11 - q^12 + 4*q^13 + ...
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^39 + A) / (eta(x^3 + A) * eta(x^13 + A)), n))}
CROSSREFS
Cf. A094362.
Sequence in context: A079673 A124829 A093394 * A124832 A226130 A137569
KEYWORD
sign
AUTHOR
Michael Somos, May 03 2004
STATUS
approved