login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124832
Table of exponents of prime factorizations in A025487.
12
1, 2, 1, 1, 3, 2, 1, 4, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 2, 1, 1, 6, 3, 2, 5, 1, 3, 1, 1, 7, 4, 2, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 5, 2, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 5, 1, 1, 9, 6, 2, 4, 2, 1, 8, 1, 3, 1, 1, 1, 5, 3, 2, 2, 2, 6, 1, 1, 10, 3, 3, 1, 7, 2, 2, 2, 1, 1, 4, 4, 5, 2, 1, 9, 1, 4, 1, 1, 1, 6
OFFSET
2,2
COMMENTS
This is an enumeration of all partitions.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..10820 (rows 2 <= n <= 2500, first 106 terms from Ray Chandler).
FORMULA
A025487(n) = Product_{k=1..A061394(n)} prime(k)^T(n,k). [Edited by M. F. Hasler, Oct 12 2018]
EXAMPLE
From M. F. Hasler, Oct 12 2018: (Start)
The table starts as follows:
n : signature (A025487(n) = factorization)
1 : [] (1 = empty product)
2 : [1] (2 = 2^1)
3 : [2] (4 = 2^2)
4 : [1, 1] (6 = 2^1 * 3^1)
5 : [3] (8 = 2^3)
6 : [2, 1] (12 = 2^2 * 3^1)
7 : [4] (16 = 2^4)
8 : [3,1] (24 = 2^3 * 3^1)
9 : [1, 1, 1] (30 = 2^1 * 3^1 * 5^1)
etc. (End)
MATHEMATICA
Map[FactorInteger[#][[All, -1]] &, Import["https://oeis.org/A025487/b025487.txt", "Data"][[2 ;; 48, -1]] ] // Flatten (* Michael De Vlieger, Feb 06 2020 *)
PROG
(PARI) A124832_row(n)=factor(A025487(n))[, 2] \\ M. F. Hasler, Oct 12 2018
CROSSREFS
Cf. A025487, A036041 (row sums), A061394 (row lengths), A124829, A036036, A080577.
Sequence in context: A124829 A093394 A094363 * A226130 A137569 A266715
KEYWORD
nonn,tabf
AUTHOR
EXTENSIONS
Erroneous explanations in cross-references corrected by M. F. Hasler, Oct 12 2018
STATUS
approved