login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A061394
Number of distinct prime factors of n-th least prime signature (A025487); also a(n)-th prime is largest prime factor of n-th least prime signature; also a(n)-th primorial number is largest primorial factor of n-th least product of primorial numbers.
12
0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 3, 2, 4, 2, 3, 1, 2, 3, 2, 4, 2, 3, 1, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 4, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 5, 4, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 5, 4, 2, 3, 3, 2, 4, 3, 4, 2, 3, 4, 3, 2, 1, 3, 2, 5, 4, 2, 3, 3, 2, 4, 3, 4, 2, 5, 3, 4, 3, 2, 1, 3, 2, 5, 4, 2, 3, 3
OFFSET
1,4
COMMENTS
A002110(a(n)) = A247451(n). - Reinhard Zumkeller, Sep 17 2014
Number of parts of the associated prime signature. - Álvar Ibeas, Nov 01 2014
LINKS
FORMULA
a(n) = A061395(A025487(n)) = A001221(A025487(n)) = A051903(A181822(n)).
A000040(a(n)) = A006530(A025487(n)).
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a061394 = fromJust . (`elemIndex` a002110_list) . a247451
-- Reinhard Zumkeller, Sep 17 2014
(PARI) isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1)))
[omega(n) | n <- [1..1000], isA025487(n)]
\\ Or, for older versions:
apply(omega, select(isA025487, [1..1000])) \\ Charles R Greathouse IV, Nov 07 2014
CROSSREFS
Cf. A002110, A247451, A006530, A061395, A025487, A000040, A051903. A001221 by prime signature.
Sequence in context: A105265 A351468 A193360 * A248141 A220694 A136314
KEYWORD
nonn
AUTHOR
Henry Bottomley, Apr 30 2001
EXTENSIONS
Offset updated by Matthew Vandermast, Nov 08 2008
STATUS
approved