login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061391
a(n) = t(n,3) = Sum_{d|n} tau(d^3), where tau(n) = number of divisors of n, cf. A000005.
9
1, 5, 5, 12, 5, 25, 5, 22, 12, 25, 5, 60, 5, 25, 25, 35, 5, 60, 5, 60, 25, 25, 5, 110, 12, 25, 22, 60, 5, 125, 5, 51, 25, 25, 25, 144, 5, 25, 25, 110, 5, 125, 5, 60, 60, 25, 5, 175, 12, 60, 25, 60, 5, 110, 25, 110, 25, 25, 5, 300, 5, 25, 60, 70, 25, 125, 5, 60, 25, 125, 5, 264
OFFSET
1,2
COMMENTS
Inverse Mobius transform of A048785. - R. J. Mathar, Feb 09 2011
LINKS
FORMULA
t(n, k) = Sum_{d|n} tau(d^k) is multiplicative: if the canonical factorization of n = Product p^e(p) over primes then t(n, k) = Product t(p^e(p), k), t(p^e(p), k) = (1/2) *(k*e(p)+2)*(e(p)+1).
For k=2 we get an interesting identity: Sum_{d|n} tau(d^2)=(tau(n))^2, cf. A048691, A035116.
a(n) = Sum_{d|n} tau(n*d). - Benoit Cloitre, Nov 30 2002
G.f.: Sum_{n>=1} tau(n^3)*x^n/(1-x^n). - Joerg Arndt, Jan 01 2011
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021
MATHEMATICA
f[p_, e_] := (3*e^2 + 5*e + 2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI)
A061391 = n -> sumdiv(n, d, numdiv(d^3));
for(n=1, 10000, write("b061391.txt", n, " ", A061391(n)));
\\ Antti Karttunen, Jan 17 2017
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
CROSSREFS
Cf. t(n, 0) = A000005(n), t(n, 1) = A007425(n), t(n, 2) = A035116(n).
Cf. A048691.
Sequence in context: A098331 A222575 A222681 * A168336 A123133 A328367
KEYWORD
nonn,mult
AUTHOR
Vladeta Jovovic, Apr 29 2001
STATUS
approved