OFFSET
1,2
COMMENTS
Inverse Mobius transform of A048785. - R. J. Mathar, Feb 09 2011
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
t(n, k) = Sum_{d|n} tau(d^k) is multiplicative: if the canonical factorization of n = Product p^e(p) over primes then t(n, k) = Product t(p^e(p), k), t(p^e(p), k) = (1/2) *(k*e(p)+2)*(e(p)+1).
a(n) = Sum_{d|n} tau(n*d). - Benoit Cloitre, Nov 30 2002
G.f.: Sum_{n>=1} tau(n^3)*x^n/(1-x^n). - Joerg Arndt, Jan 01 2011
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021
MATHEMATICA
f[p_, e_] := (3*e^2 + 5*e + 2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI)
A061391 = n -> sumdiv(n, d, numdiv(d^3));
for(n=1, 10000, write("b061391.txt", n, " ", A061391(n)));
\\ Antti Karttunen, Jan 17 2017
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Vladeta Jovovic, Apr 29 2001
STATUS
approved