login
A079676
LookAndSay(n) is palindromic.
1
1, 22, 112, 211, 333, 1113, 1221, 3111, 4444, 11114, 13331, 22122, 22233, 33222, 41111, 55555, 111115, 111223, 112112, 113332, 144441, 211211, 222133, 222244, 233311, 322111, 331222, 442222, 511111, 666666, 1111116, 1111224, 1112113
OFFSET
1,2
EXAMPLE
LookAndSay(112) = 2112 ( two 1's, one 2), a palindrome, so 22 belongs to the sequence.
MATHEMATICA
RunLengthEncode[x_List] := (Through[{First, Length}[ #1 ]] &) /@ Split[x]; Do[a = Flatten[ RunLengthEncode[ IntegerDigits[n]]]; If[a == Reverse[a], Print[n]], {n, 1, 10^6}]
CROSSREFS
Different from A079466.
Sequence in context: A214216 A079466 A217086 * A374026 A074277 A299580
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Jan 26 2003
EXTENSIONS
More terms from Robert G. Wilson v, Jan 27 2003
STATUS
approved