login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table of exponents of prime factorizations in A055932.
6

%I #6 Feb 06 2020 20:54:29

%S 1,2,1,1,3,2,1,4,1,2,3,1,1,1,1,5,2,2,4,1,1,3,2,1,1,6,3,2,1,2,1,5,1,2,

%T 3,3,1,1,7,4,2,1,1,2,1,4,2,2,1,6,1,1,1,1,1,3,3,4,1,1,8,1,3,1,5,2,2,1,

%U 2,2,4,3,2,1,7,1,2,1,1,1,4,3,1,2,2,5,1,1,1,5,9,2,3,1,6,2,3,1,2,1,2,1,1,3,4

%N Table of exponents of prime factorizations in A055932.

%C This is an enumeration of all compositions. This sequence contains all finite sequences of positive integers.

%H Michael De Vlieger, <a href="/A124829/b124829.txt">Table of n, a(n) for n = 1..10382</a> (rows 1 <= n <= 2500).

%F A055932(n) = Product_k Prime(k)^T(n,k).

%e From _Michael De Vlieger_, Feb 06 2020: (Start)

%e Table begins:

%e n A055932(n+1) row n

%e ---------------------

%e 1 2 1;

%e 2 4 2;

%e 3 6 1, 1;

%e 4 8 3;

%e 5 12 2, 1;

%e 6 16 4;

%e 7 18 1, 2;

%e 8 24 3, 1;

%e 9 30 1, 1, 1;

%e 10 32 5;

%e 11 36 2, 2;

%e 12 48 4, 1;

%e 13 54 1, 3;

%e 14 60 2, 1, 1;

%e 15 64 6;

%e ... (End)

%t Map[FactorInteger[#][[All, -1]] &, Select[Range[10^3], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] // Flatten (* _Michael De Vlieger_, Feb 06 2020 *)

%Y Cf. A055932, A124830 (row lengths), A124831 (row sums), A124832, A066099.

%K nonn,tabf

%O 1,2

%A _Franklin T. Adams-Watters_, Nov 09 2006