Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 08 2021 06:30:04
%S 0,1,1,2,1,2,1,2,2,3,1,2,2,2,3,1,2,3,2,2,3,1,2,3,2,3,2,4,2,3,1,3,2,3,
%T 2,3,2,4,2,3,3,2,1,3,2,3,4,2,3,3,2,3,4,2,3,3,2,1,4,3,2,3,4,2,3,3,2,4,
%U 3,2,3,4,2,3,4,3,2,1,4,3,3,2,5,3,3,4,2,3,3,2,4,3,2,4,3,4,2,3,3,4,3,2,3,1,4
%N Number of distinct prime factors of A055932(n).
%H Michael De Vlieger, <a href="/A124830/b124830.txt">Table of n, a(n) for n = 1..10000</a> (First 1000 terms from G. C. Greubel.)
%F a(n) = A001221(A055932(n)).
%t PrimeNu /@ Select[Range[4000], ! MemberQ[Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #, 0] &] (* _Michael De Vlieger_, Feb 02 2017 *)
%t A055932[n_] := Module[{f = Transpose[FactorInteger[n]][[1]]}, f == {1} || f == Prime[Range[Length[f]]]]; PrimeNu[Select[Range[2000], A055932]] (* _G. C. Greubel_, May 11 2017 *)
%o (Python)
%o from sympy import nextprime, primefactors
%o def a053669(n):
%o p = 2
%o while True:
%o if n%p!=0: return p
%o else: p=nextprime(p)
%o def ok(n): return True if n==1 else a053669(n)>max(primefactors(n))
%o print([len(primefactors(n)) for n in range(1, 10001) if ok(n)]) # _Indranil Ghosh_, May 11 2017
%Y Cf. A055932, A001221, A124829, A124831, A061394.
%K nonn
%O 1,4
%A _Franklin T. Adams-Watters_, Nov 09 2006