login
A287828
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 4.
0
1, 10, 88, 776, 6844, 60364, 532412, 4695892, 41417932, 365307620, 3222026092, 28418383780, 250651147340, 2210751960772, 19498910274028, 171981076403492, 1516879160180620, 13378927697789188, 118002614210453804, 1040787219651555556, 9179779989094951372
OFFSET
0,2
FORMULA
For n>3, a(n) = 9*a(n-1) - 14*a(n-3), a(0)=1, a(1)=10, a(2)=88, a(3)=776.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 9*x + 14*x^3).
MATHEMATICA
LinearRecurrence[{9, 0, -14}, {1, 10, 88, 776}, 30]
PROG
(Python)
def a(n):
.if n in [0, 1, 2, 3]:
..return [1, 10, 88, 776][n]
.return 9*a(n-1)-14*a(n-3)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 02 2017
STATUS
approved