The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287830 Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 7. 0
 1, 10, 94, 886, 8350, 78694, 741646, 6989590, 65872894, 620814406, 5850821230, 55140648694, 519669123166, 4897584703270, 46156938822094, 435002788211926, 4099652849195710, 38636886795609094, 364130592557264686, 3431722880197818550, 32342028292009425694 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, the number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 5+k for k in {0,1,2,3,4} is given by a(n) = 9*a(n-1) + 2*k*a(n-2), a(0)=1, a(1)=10. LINKS Table of n, a(n) for n=0..20. Index entries for linear recurrences with constant coefficients, signature (9,4). FORMULA a(n) = 9*a(n-1) + 4*a(n-2), a(0)=1, a(1)=10. G.f.: (-1 - x)/(-1 + 9*x + 4*x^2). a(n) = ((1 - 11/sqrt(97))/2)*((9 - sqrt(97))/2)^n + ((1 + 11/sqrt(97))/2)*((9 + sqrt(97))/2)^n. a(n) = A015580(n)+A015580(n+1). - R. J. Mathar, Oct 20 2019 MATHEMATICA LinearRecurrence[{9, 4}, {1, 10}, 30] PROG (Python) def a(n): .if n in [0, 1]: ..return [1, 10][n] .return 9*a(n-1)+4*a(n-2) CROSSREFS Cf. A040000, A003945, A083318, A078057, A003946, A126358, A003946, A055099, A003947, A015448, A126473. A287804-A287819. A287825-A287831. Sequence in context: A126633 A125422 A190988 * A259289 A163738 A190987 Adjacent sequences: A287827 A287828 A287829 * A287831 A287832 A287833 KEYWORD nonn,easy AUTHOR David Nacin, Jun 02 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 22:36 EDT 2024. Contains 372954 sequences. (Running on oeis4.)