login
A287827
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 3.
0
1, 10, 86, 742, 6404, 55274, 477082, 4117804, 35541714, 306768722, 2647791524, 22853698754, 197255539962, 1702558017644, 14695170558994, 126837403201602, 1094762853302164, 9449150445514434, 81557794797885642, 703944119701429084, 6075903902137709074
OFFSET
0,2
FORMULA
For n>4, a(n) = 9*a(n-1) - a(n-2) - 20*a(n-3) + 10*a(n-4), a(0)=1, a(1)=10, a(2)=86, a(3)=742, a(4)=6404.
G.f.: (-1 - x + 3*x^2 + 2*x^3 - 2*x^4)/(-1 + 9*x - x^2 - 20*x^3 + 10*x^4).
MATHEMATICA
LinearRecurrence[{9, -1, -20, 10}, {1, 10, 86, 742, 6404}, 30]
PROG
(Python)
def a(n):
.if n in [0, 1, 2, 3, 4]:
..return [1, 10, 86, 742, 6404][n]
.return 9*a(n-1)-a(n-2)-20*a(n-3)+10*a(n-4)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 02 2017
STATUS
approved