login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234839
a(n) = Sum_{k = 0..n} (-1)^k * binomial(n,k) * binomial(2*n,k).
13
1, -1, -1, 8, -17, -1, 116, -344, 239, 1709, -7001, 9316, 22276, -138412, 268568, 189008, -2608913, 6809417, -1814851, -45852416, 159116983, -155628353, -720492928, 3481793888, -5558713852, -9029921876, 71541001076, -158672882224, -45300345128, 1370202238072
OFFSET
0,4
COMMENTS
For each n > 0, a(p-n) == 2^(2 - 3*n)*A252355(n) (mod p), for all primes p >= 2*n+1 [Chamberland, et al., Thm. 2.3]. - L. Edson Jeffery, Dec 17 2014
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
LINKS
Marc Chamberland and Karl Dilcher, A Binomial Sum Related to Wolstenholme's Theorem, J. Number Theory, Vol. 171, Issue 11 (Nov. 2009), pp. 2659-2672.
Robert Osburn, Brundaban Sahu, and Armin Straub, Supercongruences for sporadic sequences, arXiv:1312.2195 [math.NT], 2014.
FORMULA
Recurrence: 2*n*(2*n-1)*(7*n-10)*a(n) = -(91*n^3 - 221*n^2 + 160*n - 36)*a(n-1) - 16*(n-1)*(2*n-3)*(7*n-3)*a(n-2).
Lim sup n->infinity |a(n)|^(1/n) = 2*sqrt(2).
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 - x + 3*x^3 - 7*x^4 + 4*x^5 + 24*x^6 - 85*x^7 + 99*x^8 + 215*x^9 - 1196*x^10 + ... appears to have integer coefficients. - Peter Bala, Jan 04 2016
From Peter Bala, Apr 02 2020: (Start)
a(n) = Sum_{k = 0..floor(n/2)} (-1)^(n+k)*binomial(n,k)*binomial(n,2*k).
a(n) = hypergeom([-n, -n/2, 1/2 - n/2], [1, 1/2], 1). (End)
From Peter Bala, Feb 23 2022: (Start)
a(n) = [x^n] ((1 - x)*(1 - x^2))^n. This implies that exp( Sum_{n >= 1} a(n)*x^n/n ) has integer coefficients as suggested above.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. [added Apr 12 2022: this was proved in 2014 by Osburn et al.; see Example 3.3]
The o.g.f. A(x) is the diagonal of the bivariate rational function 1/(1 - t*(1-x)*(1-x^2) ) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = 1/x*Series_Reversion( x/((1-x)*(1-x^2)) ). Then A(x) = 1 + x*d/dx(Log(F(x))). (End)
a(n) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(2*n+k, k)*2^(n-k). - Peter Bala, Feb 14 2024
MATHEMATICA
Table[Sum[(-1)^k*Binomial[n, k]*Binomial[2*n, k], {k, 0, n}], {n, 0, 20}]
Table[Hypergeometric2F1[-2*n, -n, 1, -1], {n, 0, 20}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2*n, k)); \\ Michel Marcus, Jan 13 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vaclav Kotesovec, Dec 31 2013
STATUS
approved