login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110608
Number triangle T(n,k) = binomial(n,k)*binomial(2n,n-k).
6
1, 2, 1, 6, 8, 1, 20, 45, 18, 1, 70, 224, 168, 32, 1, 252, 1050, 1200, 450, 50, 1, 924, 4752, 7425, 4400, 990, 72, 1, 3432, 21021, 42042, 35035, 12740, 1911, 98, 1, 12870, 91520, 224224, 244608, 127400, 31360, 3360, 128, 1, 48620, 393822, 1145664, 1559376
OFFSET
0,2
COMMENTS
First column is A000984. Second column is A110609 = n^2*A000108. Row sums are A005809.
FORMULA
From Peter Bala, Oct 13 2015: (Start)
n-th row polynomial R(n,t) = [x^n] ( (1 + t*x)*(1 + x)^2 )^n.
Cf. A008459, whose n-th row polynomial is equal to [x^n] ( (1 + t*x)*(1 + x) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (2 + t)*x + (5 + 6*t + t^2)*x^2 + ... is the o.g.f. for A120986. (End)
EXAMPLE
Triangle begin
n\k| 0 1 2 3 4 5
---------------------------------
0 | 1
1 | 2 1
2 | 6 8 1
3 | 20 45 18 1
4 | 70 224 168 32 1
5 | 252 1050 1200 450 50 1
...
MATHEMATICA
Flatten[Table[Table[Binomial[n, k]Binomial[2n, n-k], {k, 0, n}], {n, 0, 10}]] (* Harvey P. Dale, Aug 10 2011 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*binomial(2*n, n-k), ", "))) \\ G. C. Greubel, Sep 01 2017
(Maxima)
B(x, y):=(sqrt(-x*(4*x^2*y^3+(-12*x^2-8*x)*y^2+(12*x^2-20*x+4)*y-4*x^2+x))/(2*3^(3/2))-(x*(18*y+9)-2)/54)^(1/3);
C(x, y):=-B(x, y)-(x*(3*y-3)+1)/(9*B(x, y))-1/3;
A(x, y):=x*diff(C(x, y), x)*(-1/C(x, y)+1/(1+C(x, y)));
taylor(A(x, y), x, 0, 7, y, 0, 7); /* Vladimir Kruchinin, Sep 24 2018 */
CROSSREFS
Cf. A000108, A000984, A005809 (row sums), A008459, A110609 (column 2), A120986.
Sequence in context: A193734 A318390 A319511 * A318397 A190015 A112007
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jul 30 2005
STATUS
approved