login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110610
Maximal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.
4
1, 4, 11, 25, 48, 82, 129, 191, 270, 368, 487, 629, 796, 990, 1213, 1467, 1754, 2076, 2435, 2833, 3272, 3754, 4281, 4855, 5478, 6152, 6879, 7661, 8500, 9398, 10357, 11379, 12466, 13620, 14843, 16137, 17504, 18946, 20465, 22063, 23742, 25504
OFFSET
1,2
LINKS
Leonard F. Klosinski, Gerald L. Alexanderson and Loren C. Larson, The Fifty-Seventh William Lowell Putnam Competition, Amer. Math. Monthly, 104, 1997, 744-754, Problem B-3.
Vasile Mihai and Michael Woltermann, Problem 10725: The Smoothest and Roughest Permutations, Amer. Math. Monthly, 108 (March 2001), pp. 272-273.
FORMULA
a(1)=1; a(n)=(2n^3+3n^2-11n+18)/6 for n>=2.
G.f.: x*(1+x)*(1-x+2*x^2-x^3)/(1-x)^4. [Colin Barker, Jul 24 2012]
EXAMPLE
a(4)=25 because the values of the sum for the permutations of {1,2,3,4} are 21 (8 times), 24 (8 times) and 25 (8 times).
MAPLE
a:=proc(n) if n=1 then 1 else (2*n^3+3*n^2-11*n+18)/6 fi end: seq(a(n), n=1..50);
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + x) (1 - x + 2 x^2 - x^3)/(1 - x)^4, {x, 0, 42}], x] (* Michael De Vlieger, Jan 29 2022 *)
CROSSREFS
Cf. also A064842, A087035, A185173.
Sequence in context: A181946 A176959 A115294 * A051462 A006004 A290876
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jul 30 2005
STATUS
approved