login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.
4

%I #18 Jan 29 2022 12:43:13

%S 1,4,11,25,48,82,129,191,270,368,487,629,796,990,1213,1467,1754,2076,

%T 2435,2833,3272,3754,4281,4855,5478,6152,6879,7661,8500,9398,10357,

%U 11379,12466,13620,14843,16137,17504,18946,20465,22063,23742,25504

%N Maximal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.

%H Michael De Vlieger, <a href="/A110610/b110610.txt">Table of n, a(n) for n = 1..10000</a>

%H Leonard F. Klosinski, Gerald L. Alexanderson and Loren C. Larson, <a href="https://www.jstor.org/stable/2975240">The Fifty-Seventh William Lowell Putnam Competition</a>, Amer. Math. Monthly, 104, 1997, 744-754, Problem B-3.

%H Vasile Mihai and Michael Woltermann, <a href="https://www.jstor.org/stable/2695399">Problem 10725: The Smoothest and Roughest Permutations</a>, Amer. Math. Monthly, 108 (March 2001), pp. 272-273.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(1)=1; a(n)=(2n^3+3n^2-11n+18)/6 for n>=2.

%F G.f.: x*(1+x)*(1-x+2*x^2-x^3)/(1-x)^4. [_Colin Barker_, Jul 24 2012]

%e a(4)=25 because the values of the sum for the permutations of {1,2,3,4} are 21 (8 times), 24 (8 times) and 25 (8 times).

%p a:=proc(n) if n=1 then 1 else (2*n^3+3*n^2-11*n+18)/6 fi end: seq(a(n),n=1..50);

%t Rest@ CoefficientList[Series[x (1 + x) (1 - x + 2 x^2 - x^3)/(1 - x)^4, {x, 0, 42}], x] (* _Michael De Vlieger_, Jan 29 2022 *)

%Y Cf. A016825, A110611.

%Y Cf. also A064842, A087035, A185173.

%K nonn,easy

%O 1,2

%A _Emeric Deutsch_, Jul 30 2005