login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number triangle T(n,k) = binomial(n,k)*binomial(2n,n-k).
6

%I #14 Sep 25 2018 15:01:49

%S 1,2,1,6,8,1,20,45,18,1,70,224,168,32,1,252,1050,1200,450,50,1,924,

%T 4752,7425,4400,990,72,1,3432,21021,42042,35035,12740,1911,98,1,12870,

%U 91520,224224,244608,127400,31360,3360,128,1,48620,393822,1145664,1559376

%N Number triangle T(n,k) = binomial(n,k)*binomial(2n,n-k).

%C First column is A000984. Second column is A110609 = n^2*A000108. Row sums are A005809.

%H G. C. Greubel, <a href="/A110608/b110608.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%F From _Peter Bala_, Oct 13 2015: (Start)

%F n-th row polynomial R(n,t) = [x^n] ( (1 + t*x)*(1 + x)^2 )^n.

%F Cf. A008459, whose n-th row polynomial is equal to [x^n] ( (1 + t*x)*(1 + x) )^n.

%F exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (2 + t)*x + (5 + 6*t + t^2)*x^2 + ... is the o.g.f. for A120986. (End)

%e Triangle begin

%e n\k| 0 1 2 3 4 5

%e ---------------------------------

%e 0 | 1

%e 1 | 2 1

%e 2 | 6 8 1

%e 3 | 20 45 18 1

%e 4 | 70 224 168 32 1

%e 5 | 252 1050 1200 450 50 1

%e ...

%t Flatten[Table[Table[Binomial[n,k]Binomial[2n,n-k],{k,0,n}],{n,0,10}]] (* _Harvey P. Dale_, Aug 10 2011 *)

%o (PARI) for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(2*n,n-k), ", "))) \\ _G. C. Greubel_, Sep 01 2017

%o (Maxima)

%o B(x,y):=(sqrt(-x*(4*x^2*y^3+(-12*x^2-8*x)*y^2+(12*x^2-20*x+4)*y-4*x^2+x))/(2*3^(3/2))-(x*(18*y+9)-2)/54)^(1/3);

%o C(x,y):=-B(x,y)-(x*(3*y-3)+1)/(9*B(x,y))-1/3;

%o A(x,y):=x*diff(C(x,y),x)*(-1/C(x,y)+1/(1+C(x,y)));

%o taylor(A(x,y),x,0,7,y,0,7); /* _Vladimir Kruchinin_, Sep 24 2018 */

%Y Cf. A000108, A000984, A005809 (row sums), A008459, A110609 (column 2), A120986.

%K easy,nonn,tabl

%O 0,2

%A _Paul Barry_, Jul 30 2005