OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..380
FORMULA
E.g.f.: ( (1 - x/Phi^2) / (1 - Phi^2*x) )^(sqrt(5)/5) where Phi = (sqrt(5)+1)/2.
E.g.f.: exp( Integral 1/(1-3*x+x^2) dx ).
a(n) ~ n! * 5^(1/(2*sqrt(5))) * n^(1/sqrt(5)-1) * ((1+sqrt(5))/2)^(2*n-2/sqrt(5)) / GAMMA(1/sqrt(5)). - Vaclav Kotesovec, Jun 28 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 26*x^3/3! + 236*x^4/4! + 2756*x^5/5! +...
where
log(A(x)) = x + 3*x^2/2 + 8*x^3/3 + 21*x^4/4 + 55*x^5/5 + 144*x^6/6 + 377*x^7/7 + 987*x^8/8 +...+ A000045(2*n)*x^n/n +...
PROG
(PARI) {a(n)=n!*polcoeff(exp(intformal(1/(1-3*x+x^2 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2014
STATUS
approved