login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244451
E.g.f.: exp( Sum_{n>=1} Fibonacci(2*n)*x^n/n ).
2
1, 1, 4, 26, 236, 2756, 39376, 665464, 12986416, 287394416, 7112021696, 194607175136, 5834321568064, 190181750900416, 6697115871398656, 253362903806266496, 10248299242094541056, 441359565949128552704, 20163160035504969573376, 973917774772339989408256
OFFSET
0,3
LINKS
FORMULA
E.g.f.: ( (1 - x/Phi^2) / (1 - Phi^2*x) )^(sqrt(5)/5) where Phi = (sqrt(5)+1)/2.
E.g.f.: exp( Integral 1/(1-3*x+x^2) dx ).
a(n) ~ n! * 5^(1/(2*sqrt(5))) * n^(1/sqrt(5)-1) * ((1+sqrt(5))/2)^(2*n-2/sqrt(5)) / GAMMA(1/sqrt(5)). - Vaclav Kotesovec, Jun 28 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 26*x^3/3! + 236*x^4/4! + 2756*x^5/5! +...
where
log(A(x)) = x + 3*x^2/2 + 8*x^3/3 + 21*x^4/4 + 55*x^5/5 + 144*x^6/6 + 377*x^7/7 + 987*x^8/8 +...+ A000045(2*n)*x^n/n +...
PROG
(PARI) {a(n)=n!*polcoeff(exp(intformal(1/(1-3*x+x^2 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A054360 A124824 A000311 * A001863 A300698 A244524
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 28 2014
STATUS
approved