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THE NUMBER OF EVOLUTIONARY TREES

98195) 1978. The number of cvolutionary trees. Syst. Zool. 27:27-33.—A simple method of
counting the number of possible evolutionary trees is presented. The trees are assumed to
be rooted, with labelled tips but unlabelled root and unlabelled interior nodes. The method
allows multilurcations as well as bilurcations. 1t makes use ol a simple recurrence relation
for T(n,m), the number of trees with n labelled tips and m unlabelled interior nodes. A table
of the total number of trees is presented up to n = 22, There are 282,137,824 different trees
having 10 tip species, and over 8.87 x 10 ditferent trees having 20 tip species. The method
is extended to count trees soine of whose interior nodes may be lubelled. The principal uses
ol these numbers will be to double-check algorithms and notation systems, and to {righten
taxonomists. |Evolutionary trees; cladistic methods; combinatorial algorithms; graphs.)

Estimating the phylogeny of a group
involves selecting one evolutionary tree
from among a large number of possibili-
ties. Most taxonomists probably do not
stop to think how many possibilities
there are. The calculation of this number
is hardly the most vital task facing con-

temporary taxonomy, but it may be of

some educational value to persons pro-
posing phylogenetic methods. In partic-
ular, if a computer procedure involves
evaluation of all possible trees, knowl-
edge of their number is useful as a check
on whether all possibilities are in fact
being considered.

The counting of trees has been a math-
ematician’s diversion ever since the pi-
oneering work of Cayley (1856). More re-
cent work has been reviewed by Moon
(1970). Harding (1971) has considered
the shape of unlabelled trees generated
by a random speciation process. Cavalli-
Sforza and Edwards (1967) have counted
the number of bifurcating trees having n
unlabelled tips, as have Dobson (1974a,
b) and Phipps (1976a). Dobson (1974a, b)
has computed the number of unrooted
bifurcating trees with n unlabelled tips.

The feature of evolutionary trees
which makes them unusual among the
“trees” of graph theory is that some (usu-
ally all) of their interior nodes (forks) are
unlabelled. Figure 1 illustrates the ter-
minology. When all interior nodes must
have labels, in addition to the tip species,

27

one can adapt Cayley’s (1889) enumera-
tion of the number of labelled unrooted
trees to enumerate the number of la-
belled rooted trees. Harper (1976) has
done this: he finds that there are n" !
such trees having n species. But this case
is not the one most commonly encoun-
tered. Usually, the tip species are la-
belled but the interior nodes are not.

Two such cases were treated by
Schroder (1870). The first is the case in
which only bifurcations are allowed at
cach interior node. Edwards and Cavalli-
Sforza (1964; Cavalli-Sforza and Ed-
wards, 1967) have used a much simpler
method to compute the same quantities.
It will be of interest to present their
method, as the results in this paper are
generalizations of it.

COUNTING BIFURCATING TREES

Edwards and Cavalli-Sforza’s argu-
ment is recursive: it computes the num-
ber of bifurcating trees with n tip species
in terms of the number with n -1 tip
species. They make use of the fact that
there is exactly one way to construct a
given n-species tree by successively add-
ing new species to the tree in the order
1, 2, 3, ..., n, starting from the single
one-species tree containing only species
1.

This should be reasonably obvious, but
in case it is not, it can be justified as fol-
lows. There is only one result possible
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F1G6. 1.—(A) A rooted tree with labelled tips and
unlabelled interior nodes. (B) The same tree, drawn
differently to show the sorts of rearrangemen's
(changing the order of branches at a fork) which for
the purposes of this paper do not result in a diller-
ent tree. The labelled nodes are indicated by open
circles, and the root of the tree (which is not con-
sidered to be a node) by R.

(for a given tree) if we remove species n
from the tree. Furthermore the operation
of adding species n to this tree (in the
proper place) exactly reverses this re-
moval. These operations are exact invers-
es of one another. There is one sequence
of removal events which leads {rom u tree
with species 1, 2, ..., n down to a tree
with only species 1, provided that we re-
move species n, n— 1, n—-2, ..., 2 in

that order. So there is at least one way to
add species 2, 3, ..., n to obtain the giv-
en tree with n species. Furthermore
there is only one such way. If there were
two, then for some k, two different trees
containing species 1, 2, ..., k would ex-
ist such that we could add species k + 1,
k + 2,...,ntoDboth and obtain the given
tree. But this is impossible, since remov-
al of species n, n—1, ... k+ 1 would
then result in two difterent trees of size
k. Since that is impossible, we conclude
that there is a one-to-one correspondence
between the ways of adding species 2, 3,
4, ..., n (in that order) and the resulting
trees.

Edwards and Cavalli-Sforza simply
noted that when one was adding the k-th
species, to have the result be a bifurcat-
ing trec, the new species had to be added
by creating a new unlabelled interior
node in the middle of a segment of the
tree, and the k-th species had to arise
from that node. Figure 2 shows all pos-
sible additions of a fourth species to a
three-species tree giving hifurcating
trees as the result. When the k-th species
is being added, there are 2k = 3 places it
can be added. This is because each seg-
ment of the tree has a node at its upper
end. There are thus k = 1 segments lead-
ing to tips, and k — 2 leading to interior
nodes, lor a total of 2k — 3. Then the
number of different bilurcating trees
with n labelled tip species is, for n 2 2,

n
1-3:5---+(2n - 3) = ﬂ (2k - 3)
=2

(2n = 3!

2m-2(n — 23 (1)

Edwards and Cavalli-Sforza originally
presented (1964) a calculation of the
number ol unrooted bhifurcating trees
with n labelled tips: the above result is
given by them in a later paper (Cavalli-
Storza and Edwards, 1967). It can also be
obtained from a result of Moon (1970:6)
concerning the number of completely la-
belled (unrooted) trees with a given se-
quence of degrees of nodes. Phipps
(1976b) computed this number by direct
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enumeration methods, and guessed for-
mula (1) from the results.

COUNTING MULTIFURCATING TREES

The tree shown in Fig. 1 does not fit
into the class of bifurcating trees, be-
cause one of its nodes is a trifurcation.
Schroder (1870) developed methods for
enumerating the number of trees with n
labelled tip species when multifurcations
were allowed. His methods were some-
what complex. In this section 1 present
a considerably simpler method which
makes computation straightforward. The
key to this approach lies in noticing that
when a tree contains a multifurcation, it
has fewer than n — 1 interior nodes. Let
us classily n-species trees by the number
of their interior nodes. They may have
between 1 and n — 1 interior nodes. Let
T(n, m) be the number of distinet trees
having n (labelled) tip species and m
(unlabelled) interior nodes. If we can
compute the T(n, m), then the total num-
ber of trees with i tip species will he the
sum of the T(n, m) over all values of m.

The method will he a direet extension
ol that of Edwards and Cavalli-Sforza. We
will compute the T(n, m) from the T(n
— 1, m) by counting the number of ways
the n-th species can be added to the tree.
There will be a one-to-one correspond-
cnee between the ways of adding species
2.3, ....nand the n-species trees, since
the argument to this clfect in the pre-
vious section did not apply only to bilur-
cating trees, Clearly T(1, 0) = 1 and all
other T(1, i) = 0. Suppose that we know
all the T(n = 1. i) and wish to compute
T(n, m).

Ifwe add species nto a tree and obtain
a tree with mointerior nodes. this could
happen in two ways:

(i) We conld take a tree with n = 1 tip
species and minterior nodes and have
species noarise [rom one ol those interior
nodes, For each of the T(n = 1, m) trees
of this sort there are then mo places at
which species nocould be added.

(ii) We could take a tree with n = 1 tip
species and m = 1 interior nodes, place
a new interior node in the midst of one
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Fic. 2.—All ways in which a fourth species can
be added to a given 3-species hilurcating tree so as
to result in a bilurcating tree.

ol its segments, and have species noarise
from this new node. There are T(n - 1,
m — 1) such trees, and cach has n+ m
— 2 interior segments (since cach interior
segment has at its upper end cither a tip
species or an interior node). This second
way of adding species nois only possible
when the resulting m s greater than one.
By the one-to-one correspondence be-
tween ways ol adding species noand re-
sulting trees, we find the following re-
currence relation for the T(n,m):

m T - 1.m)
+(n+m-=2)

T(n.m) = “Tmw=1m~=1 (m>1])
T - 1.1 (m=1)
forn > 1. 2

This algorithm is simple enough to
compute by hand for small n. For larger
n a computer is necessary. | have com-
puted the T(n, m) up to n = 22 using a
double-precision FORTRAN program on
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the CDC 6400 computer at the Univer-
sity of Washington Academic Computing
Center. Above n = 22 the total number of
trees exceeds 2%, and hence cannot be
exactly represented by a double-preci-
sion number in this computer.

Table 1 shows the numbers of bifur-
cating and multifurcating trees for differ-
ent values of n. The bifurcating trees are
the T(n, n — 1), and are the same as given
by Cavalli-Sforza and Edwards. The
numbers of multifurcating trees are the
sum of the T(n, m) over all values of m,
so that the bifurcating trees are included.
The number of multilurcating trees rises
faster than the number of bilurcating
trees: for n = 20 there are over 100 times
as many of the former as of the latter.
Using the individual T(n, m), which are
not given here, one can also compute the
average number of interior nodes in ran-
domly constructed trees with n species.
It is

E m T(n, m) E T(n, m).

m

TREES WITH ANCESTORS PARTLY
LABELLED

Harper (1976) has shown that there are
n" = ! trees having a total of n labelled
nodes, with no unlabelled ancestors. Itis
the more usual situation in palcontology
to know the identities of some, but not
all, of the ancestors in the tree. It may
therefore e of interest to compute the
number ol trees with n labelled species,
where each species may be either at a tip
or at an interior node. In such trees, all
ol the tips must be Tabelled, but not all
of the interior nodes need be labelled.

Let us denote by U(n, m) the number
of different n-species trees with m unla-
belled interior nodes (allowing some of
the n species to be labelled interior
nodes). For n = 1, we clearly have U(1,
0) = 1 and all other U(1, i) = 0. We can
add the n-th species to a tree, so as to end
up with n species and m unlabelled
nodes in tour different ways:

(i) By inserting it into any of the n — 1
+ m segments of any of the U(n = 1, m)

trees with m unlabelled nodes. The re-
sult is that species n becomes a labelled
interior node.

(ii) By placing an unlabelled node in
any of the (n = 1) + (m = 1) segments ol
any of the U(n — 1, m — 1) trees having
m — 1 unlabelled nodes, and by having
the n-th species arise from this new un-
labelled node. This is only possible if m
> 0.

(iii) By labelling any of the m + 1 un-
labelled nodes in any of the U(n = I, m
+ 1) trees having m + 1 unlabelled
nodes. This is only a possibility if n — 1
> m + 1, as otherwise there would be no
such trees available,

(iv) By adding species noas the imme-
diate descendant of any one of the (n -
1) + m nodes in any of the Un = 1, m)
trees having m unlabelled interior nodes.

The resulting recurrence relation is, for
n>1,

U(n, m) =
mM+m-2)Un -1, m-=1)
(m > 0)

+2Mm+m-—1)Umn-=1,m)

+{m+ DUn-1,m+ 1)
(n>m+ 2)

(3)

The conditions to the right of cach term
specify when the term is included in the
expression. When cach is not satisfied,
that term must be taken to be zero.

Table 2 shows the result of applying
(3), up to n = 19. Notice how much larger
the numbers of trees are than the num-
bers in Table 1, They are also much larg-
er than Iarpec's (1976) value of n" 7,
which would be Un, 0).

BIFURCATING TREES WITH ANCESTORS
PARTLY LABELLED

To restrict attention to bifurcating
trees. the computation must be made
somewhat more complex. There are still
the same four ways of adding species n
to the tree, but one ol them, number (iv),
must be restricted. To avoid multifurca-
tions, the new species can be allowed to
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TABLE 1.

THE NUMBERS OF ROOTED TREES WITH n LABELLED TIPS AND WITH UNLABFLLED INTERIOR

NODES. THE LEFT COLUMN COUNTS ALL TREES, THE RIGHT COLUMN ONLY BIFURCATING TREES.

n All trees Riturcuting trees
1 1 1
2 1 ) i 1
3 4 _%,} ' ‘ff 7 3
4 l 26 15
5 ﬂt é I 236 105
6 2,752 945
7 39,208 10,395
8 660,032 135,135
9 12,818,912 2,027,025
10 282,137,824 34,459,425
11 6,939,897 ,856 654,729,075
12 18K,666,182,784 13,749,310,575
13 5.617,349,020,544 316,234,143,225
I 181,790,703,209,728 7.905,853,580,625
15 6,353,726,042 486,112 213,458,046,676,875
I6 23K.,513.970,965,250,0-48 6,190,283,353,629,375
17 9,571,020,586,418,569,216 191,898,783,962.510,625
18 408,837,905,660,430.516,224 6.332,659.870,762,850,625
19 18,522,305,410,364,568.764.416 221,643,095,476,699.771,875
20 887,094,711 1,304,094,583.095,296 8,200,794,532,637.891,559,375
21 44.782.218.857,751.551,087,214,592 319,830,986,772 877,770,815,625
22 2.376,613,641.928,796.906 249,519,104 13.113,070,457 687,988,603,440,625

arise directly from a pre-existing interior
node only if that node has only one im-
mediate descendant, It must therefore
always be a labelled interior node (al-
though some of the labelled interior
nodes will have two immediate descen-
dants). There will be different numbers

TABLE 2. THE NUMBERS OF ROOTED TREES WITH

n LABELLED SPECIES, ALLOWING MULTIFURCA-

TIONS AND ALLOWING SOME INTERIOR NODES TO
BE LABELLED.

Number of trees

a

1 I
3 22
4 f/{ 262
5 % 4.336
6 # 6 > 91.984
7 2 381,408
8 72.800.928
9 2.566.606,784

10 102.515.201 984

1 . 4575.271.116.032

12 25.649.908.491.264_

13 12.187.240.730.230.208

14 715.392,567.595.384.832

15 45.349.581,052.868.558,848
16 3.087.516,727.770.917.896,192
17 224,691,760.916,824.988.8.14,032
18 17.406.010,163,636,762.337.869.824
19 1.430,047,520,046,896,777.021.882 368

of ways of adding species n to a tree, de-
pending on how many of these eligible
labelled interior nodes there are. Letting
n = number of labelled nodes, m = num-
ber of labelled interior nodes with two
descendant, and p = number of labelled
interior nodes with exactly one descen-
dant, we wish to compute V(n, m, p), so
that by addition over all m and p we can
obtain the total number of bifurcating
treces with partially Iabelled interior
nodes (as Dbefore, including the case
where none is labelled). The recurrence
relation is:

V(n, m, p) =
@2n-2m~-p—-2)Vim—-1,m,p-1)
(p>0)
+@n-2m-p=-3)V(n-1,m,p)
2n—-2m-p-3>0)
+(n=2m—-p)V(n- 1, m-1,p)

(m>0)
+{p+DHVin-1,m~-1,p+1)

(m > 0)
+(n—-m-=p Vin—-1,m,p~- 1)

(p>0)

(4)
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TABLE 3. THE NUMBERS OF ROOTED TREFES WITI

n LABELLED SPECIES, ALLOWING SOME INTERIOR

NODES TO BE LABELLED, BUT ALLOWING NO MORE

THAN TWO IMMEDIATE DESCENDANTS OF EACH
INTERIOR NODE.

—"J \Nnmln-r of trees
1 1
2 3
3 21
4 231
5 3.495
6 67,455
7 1,584,765
8 43,897,455
9 1,400.923,755
10 50,619,052,575
11 2.042,745,514,425
12 91,066,568,444,775
13 4,444,738,893,770,175
14 235,731,710,255,186,175
15 13,499,365,993,279,291,125
16 830,161,812,269,496,081.375
17 54.564,569,247,212,367.217.875
18 3.817.304,552,613.869,238.301.375
19 283.213.21 2.610,363.528.42 1,052,625

-

The five terms here each is associated
with the condition under which it is tak-
en to be nonzero. The recursion starts, of
course, with V(I1, 0, 0) = 1 and all other
V(1, 1, j) = 0. The rationale for these five
terms will not be intuitively obvious. The
terms correspond to the four ways (i)-(iv)
of adding species n, except that the last
way is subdivided according to whether
the new species, is made to arise directly
from an “eligible” interior node or from
atip. If the number of tip species is taken
to be t, and the number of unlabelled in-
terior nodes to be u, then the total num-
ber of labelled nodes, n =t + m + p, and
the total number of segments in the tree
is the total number of nodes (labelled and
unlabelled), n + u. Furthermore, as we
go up the tree from its root, cach bifur-
cating interior node (and there are m + u
ofthem), adds one new lincage to the tree.
Since we must end up with ¢ lineages, t
=m+u+ 1.
Solving these equations for t and u,

t=n-m-—p,
and u=n-2m—-p - 1,

so that there are a total of 2n — 2m — p

— 1 segments in the tree. The five coef-
ficients of the terms in (4) are thus re-
spectively: one less than the number of
segments, two less than the number of
segments, one more than the number of
unlabelled nodes, one more than the

number of “cligible” nodes, and the

number of tips. It does not seem worth-
while to go over the argument leading to
(4) more exhaustively; interested readers
can reconstruct it themselves., Table 3
shows the results of applying (4).

FEXTENSIONS AND APPLICATIONS

Many extensions of the present ap-
proach are possible. The availability of
the individual T(m, n) and their equiva-
lents makes it straightforward to compute
the mean and variance of the number of
interior nodes, given n. One could also
consider the order of speciation events
on trees. Of particular interest would be
the number of different rooted trees (bi-
furcating or multifurcating) which are
consistent with a set of fossil species or-
dered in time, plus a certain number of
contemporary species. Of course, as soon
as onc allowed times of branching to
characterize a tree, there are an infinite
number ol possible trees, corresponding
to the infinite number of possible values
of each such continuous variable.

There seems to me to be little point in
following up these possibilities, as the
enumeration of evolutionary trees has
somewhat restricted interest. There are
three possible applications. First, one
may have a computer algorithm which is
intended to examine all possible evolu-
tionary trees ol a certain kind, or all pos-
sible hicrarchies of clustering events.
Computation of the numbers of such
trees allows us a check on whether the
algorithm works, or on whether it is fea-
sible at all to attempt to use it. Second,
one may have a proposed notation system
for a particular category of trees. By con-
sidering the ratio between the number of
different trees and the number of differ-
ent configurations ol the notation system,
one has a measure of the efficiency of the
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notation system. Third, from time to time
a taxonomist will propose a method of
finding evolutionary trees in which one
proposed step is examining all possible
trees to see whether some criterion is sat-
isfied. Enumeration of evolutionary trees
may then be a powerful argument for
adopting some procedure either less am-
bitious or more powerful,
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