login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134092
Column 2 of triangle A134090.
4
1, 3, 18, 110, 780, 6167, 53494, 504030, 5112090, 55411697, 638154165, 7770348170, 99618149267, 1339889000543, 18848892749144, 276573551651632, 4222814264496510, 66947348027905977, 1099955438013660173
OFFSET
0,2
COMMENTS
Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.
FORMULA
a(n) = [x^n] Sum_{k=0..n+2} C(n+2,k)*x^k/(1-k*x)^2 / [Product_{i=1..k}(1-i*x)].
PROG
(PARI) {a(n)= polcoeff(sum(k=0, n+2, binomial(n+2, k)*x^k/(1-k*x)^2/prod(i=0, k, 1-i*x +x*O(x^n))), n)}
CROSSREFS
Cf. A134090; columns: A122455, A134091, A134093; A134094 (row sums); A048993 (S2).
Sequence in context: A037655 A074571 A114311 * A000274 A207321 A193236
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2007
STATUS
approved