login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: entries give numbers of permutations of [1..n] by absolute barycenter.
5

%I #21 Jan 26 2021 16:22:01

%S 1,1,2,4,2,14,8,2,46,62,10,2,282,292,132,12,2,1394,2578,784,268,14,2,

%T 12658,15472,9718,1920,534,16,2,83122,171662,69318,33230,4470,1058,18,

%U 2,985730,1282604,964544,276044,107660,10100,2096,20,2,8012962,17465978,8199268,4851200,1022824,337988,22396,4160,22,2

%N Triangle read by rows: entries give numbers of permutations of [1..n] by absolute barycenter.

%C The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects.

%H Alois P. Heinz, <a href="/A062867/b062867.txt">Rows n = 0..20, flattened</a>

%F T(n,0) = A062868(n) = A062866(n,0), T(n,k) = 2 * A062866(n,k) for k>0. - _Alois P. Heinz_, Jul 31 2018

%e [1], [2], [4, 2], [14, 8, 2], [46, 62, 10, 2], [282, 292, 132, 12, 2], ...

%e (1,6,2,3,4,5,7) has difference (0,5,-1,-1,-1,-1,0) and signs (0,1,-1,-1,-1,-1,0) with total -3, absolute value is 3. This is one of 268 such permutations of degree 7.

%e Triangle T(n,k) begins:

%e 1;

%e 1;

%e 2;

%e 4, 2;

%e 14, 8, 2;

%e 46, 62, 10, 2;

%e 282, 292, 132, 12, 2;

%e 1394, 2578, 784, 268, 14, 2;

%e 12658, 15472, 9718, 1920, 534, 16, 2;

%e 83122, 171662, 69318, 33230, 4470, 1058, 18, 2;

%e 985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2;

%p b:= proc(s, t) option remember; (n-> `if`(n=0, x^t,

%p add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i)*`if`(i=0, 1, 2), i=0..degree(p)))(b({$1..n}, 0)):

%p seq(T(n), n=0..12); # _Alois P. Heinz_, Jul 31 2018

%t b[s_, t_] := b[s, t] = With[{n = Length[s]}, If[n == 0, x^t, Sum[b[s ~Complement~ {j}, t + Sign[n - j]], {j, s}]]];

%t T[n_] := With[{p = b[Range[n], 0]}, Table[Coefficient[p, x, i]*If[i == 0, 1, 2], {i, 0, Exponent[p, x]}]];

%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 25 2021, after _Alois P. Heinz_ *)

%Y Column k=0 gives A062868.

%Y Row sums give A000142.

%Y Cf. A062866.

%K nice,nonn,tabf

%O 0,3

%A _Olivier Gérard_, Jun 26 2001

%E More terms from _Vladeta Jovovic_, Jun 29 2001