login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341439 Table of generalized ménage numbers read by antidiagonals upward: T(n,k) is the number of permutations pi in S_k such that pi(i) != i, i+n (mod k) for all i; n, k >= 1. 0
0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 0, 1, 2, 4, 13, 0, 0, 1, 2, 13, 80, 0, 1, 1, 9, 13, 82, 579, 0, 0, 2, 2, 13, 80, 579, 4738, 0, 1, 1, 4, 44, 82, 579, 4740, 43387, 0, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 0, 1, 2, 9, 13, 265, 579, 4752, 43390, 439794, 4890741 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,10

COMMENTS

The recurrence for the second row comes from Doron Zeilberger's MENAGE program, available via the arXiv reference.

LINKS

Table of n, a(n) for n=1..66.

D. Zeilberger, Automatic Enumeration of Generalized Menage Numbers, arXiv preprint arXiv:1401.1089 [math.CO], 2014.

FORMULA

T(n,n) = A000166(n) for n >= 1.

T(1,k) = A000179(k).

T(k-1,k) = A000179(k) for k >= 2.

T(n,k) = T(n+k, k).

T(2,k) = k*T(2,k-1) + 3*T(2,k-2) + (-2*k+6)*T(2,k-3) - 3*T(2,k-4) + (k-6)*T(2,k-5) + T(2,k-6) for k > 8.

EXAMPLE

Table begins:

n\k | 1 2 3 4  5   6    7     8

----+--------------------------

  1 | 0 0 1 2 13  80  579  4738

  2 | 0 1 1 4 13  82  579  4740

  3 | 0 0 2 2 13  80  579  4738

  4 | 0 1 1 9 13  82  579  4752

  5 | 0 0 1 2 44  80  579  4738

  6 | 0 1 2 4 13 265  579  4740

  7 | 0 0 1 2 13  80 1854  4738

  8 | 0 1 1 9 13  82  579 14833

CROSSREFS

Sequence in context: A071502 A074704 A025247 * A127767 A292577 A055509

Adjacent sequences:  A341436 A341437 A341438 * A341440 A341441 A341442

KEYWORD

nonn,tabl

AUTHOR

Peter Kagey, Feb 11 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 13:44 EDT 2021. Contains 345057 sequences. (Running on oeis4.)