login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002772 Number of terms in a bordered skew determinant.
(Formerly M1664 N0654)
3
2, 6, 22, 101, 546, 3502, 25586, 214062, 1987516, 20599076, 232482372, 2876191276, 38228128472, 549706132536, 8408517839416, 137788390312712, 2383879842920976, 43846851982943152, 846470648320690736, 17266870434276713616, 367937854493289655072 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

REFERENCES

T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.

T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 4, p. 278.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=2..22.

T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359. [Annotated scan of pages 354-357 only]

T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923, Vol. 4.

FORMULA

a(n) = (n-1)! * sum(A002771(k) / k!, k=0..n-1) with the understanding that A002771(0) = 1. - Sean A. Irvine, Aug 18 2014

CROSSREFS

Cf. A002771, A243107.

Sequence in context: A012267 A012268 A009655 * A000140 A079263 A129815

Adjacent sequences:  A002769 A002770 A002771 * A002773 A002774 A002775

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Sean A. Irvine, Aug 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)