Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Nov 05 2024 12:17:43
%S 1,2,4,9,3,5,10,8,6,16,25,11,7,15,17,26,24,12,14,18,36,49,27,23,13,19,
%T 35,37,50,48,28,22,20,34,38,64,81,51,47,29,21,33,39,63,65,82,80,52,46,
%U 30,32,40,62,66,100,121,83,79,53,45,31,41,61,67,99,101,122,120,84,78,54
%N Natural numbers in square maze arrangement, read by antidiagonals.
%C Arrange the natural numbers by taking clockwise and counterclockwise turns. Begin (LL) and then repeat (RRR)(LLL).
%C a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. - _Boris Putievskiy_, Dec 16 2012
%C For generalizations see A219159, A213928. - _Boris Putievskiy_, Mar 10 2013
%H Boris Putievskiy, <a href="/A081344/b081344.txt">Rows n = 1..100 of triangle, flattened</a>
%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F From _Boris Putievskiy_, Dec 19 2012: (Start)
%F a(n) = (i-1)^2 + i + (i-j)*(-1)^(i-1) if i >= j,
%F a(n) = (j-1)^2 + j - (j-i)*(-1)^(j-1) if i < j,
%F where
%F i = n - t*(t+1)/2,
%F j = (t*t + 3*t + 4)/2-n,
%F t = floor((-1 + sqrt(8*n-7))/2). (End)
%e The start of the sequence as table T(i,j), i,j > 0:
%e 1 .. 4 .. 5 .. 16...
%e 2 .. 3 .. 6 .. 15...
%e 9 .. 8 .. 7 .. 14...
%e 10..11 ..12 .. 13...
%e . . .
%e Enumeration by boustrophedonic ("ox-plowing") method: If i >= j: T(i,i)=(i-1)^2+i + (i-j)*(-1)^(i-1), if i < j: T(i,j)=(j-1)^2+j - (j-i)*(-1)^(j-1). - _Boris Putievskiy_, Dec 19 2012
%t T[n_, k_] := T[n, k] = Which[OddQ[n] && k==1, n^2, EvenQ[k] && n==1, k^2, EvenQ[n] && k==1, T[n-1, 1]+1, OddQ[k] && n==1, T[1, k-1]+1, k <= n, T[n, k-1]+1 - 2 Mod[n, 2], True, T[n-1, k]-1 + 2 Mod[k, 2]]; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 20 2019 *)
%o (Python)
%o t=int((math.sqrt(8*n-7) - 1)/ 2)
%o i=n-t*(t+1)/2
%o j=(t*t+3*t+4)/2-n
%o if j >= i:
%o m=(j-1)**2 + j + (j-i)*(-1)**(j-1)
%o else:
%o m=(i-1)**2 + i - (i-j)*(-1)**(i-1)
%o # _Boris Putievskiy_, Dec 19 2012
%o (Python)
%o from math import isqrt
%o def A081344(n):
%o t = (k:=isqrt(m:=n<<1))+((m<<2)>(k<<2)*(k+1)+1)-1
%o i, j = n-(t*(t+1)>>1), (t*(t+3)>>1)+2-n
%o r = max(i,j)
%o return (r-1)**2+r+(j-i if r&1 else i-j) # _Chai Wah Wu_, Nov 04 2024
%Y Cf. A219159, A213928. The main diagonal is A002061. The following appear within interlaced sequences: A016754, A001844, A053755, A004120. The first row is A081345. The first column is A081346. The inverse permutation A194280, the first inverse function (numbers of rows) A220603, the second inverse function (numbers of columns) A220604.
%K nonn,tabl
%O 1,2
%A _Paul Barry_, Mar 19 2003