The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A210440 a(n) = 2*n*(n+1)*(n+2)/3. 3
 0, 4, 16, 40, 80, 140, 224, 336, 480, 660, 880, 1144, 1456, 1820, 2240, 2720, 3264, 3876, 4560, 5320, 6160, 7084, 8096, 9200, 10400, 11700, 13104, 14616, 16240, 17980, 19840, 21824, 23936, 26180, 28560, 31080, 33744, 36556, 39520, 42640, 45920, 49364, 52976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of tin boxes necessary to build a tetrahedron with side length n, as shown in the link. If "0" is prepended, a(n) is the convolution of 2n with itself. - Wesley Ivan Hurt, Mar 14 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Pierre Gallais, Ceci n’est pas une mise en boîte !, Images des Mathématiques, CNRS, 2012. Pierre Gallais, La vis ... sans fin, Images des Mathématiques, CNRS, 2012. Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 29. Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*A000292(n). a(n+1)-a(n) = A046092(n+1). From Bruno Berselli, Jan 20 2013: (Start) G.f.: 4*x/(1-x)^4. a(n) = -a(-n-2) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). a(n)-a(-n) = A217873(n). a(n)+a(-n) = A016742(n). (n-1)*a(n)-n*a(n-1) = A130809(n+1) with n>1. (End) From Bruno Berselli, Jan 21 2013: (Start) a(n) = n*A028552(n) - Sum_{i=0..n-1} A028552(i) for n>0. 4*A001296(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n>0. (End) G.f.: 2*x*W(0) , where W(k) = 1 + 1/( 1 - x*(k+2)*(k+4)/(x*(k+2)*(k+4) + (k+1)*(k+2)/W(k+1) )) ); (continued fraction). - Sergei N. Gladkovskii, Aug 24 2013 a(n) = Sum_{i=1..n} i*(2n-i+3). - Wesley Ivan Hurt, Oct 03 2013 From Amiram Eldar, Apr 30 2023: (Start) Sum_{n>=1} 1/a(n) = 3/8. Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 15/8. (End) MAPLE A210440:=n->2*n*(n+1)*(n+2)/3; seq(A210440(k), k=0..100); # Wesley Ivan Hurt, Sep 25 2013 MATHEMATICA Table[2n(n+1)(n+2)/3, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 16, 40}, 50] (* Harvey P. Dale, Feb 13 2013 *) CoefficientList[Series[4 x/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 24 2014 *) PROG (Maxima) A210440(n):=2*n*(n+1)*(n+2)/3\$ makelist(A210440(n), n, 0, 20); /* Martin Ettl, Jan 22 2013 */ (Magma) [2*n*(n+1)*(n+2)/3: n in [0..50]]; // Vincenzo Librandi, Jun 24 2014 CROSSREFS Cf. A000292, A028552, A033488 (partial sums), A046092, A130809. Sequence in context: A152133 A371345 A297361 * A329892 A220499 A331574 Adjacent sequences: A210437 A210438 A210439 * A210441 A210442 A210443 KEYWORD nonn,easy AUTHOR Michel Marcus, Jan 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 09:23 EDT 2024. Contains 373542 sequences. (Running on oeis4.)