login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217873 4*n*(n^2+2)/3. 4
0, 4, 16, 44, 96, 180, 304, 476, 704, 996, 1360, 1804, 2336, 2964, 3696, 4540, 5504, 6596, 7824, 9196, 10720, 12404, 14256, 16284, 18496, 20900, 23504, 26316, 29344, 32596, 36080, 39804, 43776, 48004, 52496, 57260, 62304, 67636, 73264, 79196, 85440, 92004 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Occurs as 4th column in the table A142978 of figurate numbers for n-dimensional cross polytope.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = 4*A006527(n)

From Peter Luschny, Oct 14 2012: (Start)

a(n) = A008412(n)/2

a(n) = A174794(n + 1) - 1

First differences are in A112087.

Second differences are in A008590 and A022144.

Binomial transformation of (a(n), n > 0) is A082138.  (End)

G.f. 4*x*(1 + x^2) / (x - 1)^4 . - R. J. Mathar, Oct 15 2012

a(0)=0, a(1)=4, a(2)=16, a(3)=44, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Mar 16 2015

MATHEMATICA

Table[4n(n^2 + 2)/3, {n, 0, 39}] (* Alonso del Arte, Oct 22 2012 *)

LinearRecurrence[{4, -6, 4, -1}, {0, 4, 16, 44}, 50] (* Harvey P. Dale, Mar 16 2015 *)

PROG

(PARI) a(n)=(n^2+2)*n/3*4

(Maxima) makelist(4*n*(n^2+2)/3, n, 0, 41); /* Martin Ettl, Oct 15 2012] */

(MAGMA) [4*n*(n^2+2)/3: n in [0..45]]; // Vincenzo Librandi, Nov 08 2012

CROSSREFS

Sequence in context: A161142 A259013 A212960 * A289086 A018210 A054498

Adjacent sequences:  A217870 A217871 A217872 * A217874 A217875 A217876

KEYWORD

nonn,easy

AUTHOR

M. F. Hasler, Oct 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 11:03 EDT 2018. Contains 316224 sequences. (Running on oeis4.)