|
|
A174794
|
|
a(0) = 0 and a(n) = (4*n^3 - 12*n^2 + 20*n - 9)/3 for n >= 1.
|
|
5
|
|
|
0, 1, 5, 17, 45, 97, 181, 305, 477, 705, 997, 1361, 1805, 2337, 2965, 3697, 4541, 5505, 6597, 7825, 9197, 10721, 12405, 14257, 16285, 18497, 20901, 23505, 26317, 29345, 32597, 36081, 39805, 43777, 48005, 52497, 57261, 62305, 67637, 73265, 79197, 85441, 92005, 98897
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
For n >= 1, a(n+1) = (4*n^3 + 8*n + 3)/3 is the number of evaluation points on the n-dimensional cube in Stenger's degree 7 cubature rule. - Franck Maminirina Ramaharo, Dec 18 2018
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1 + x)*(1 + 3*x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 5.
a(n) = 8*binomial(n - 1, 3) + 8*binomial(n - 1, 2) + 4*binomial(n - 1, 1) + 1, n >= 1.
E.g.f.: (9 - (9 - 12*x - 4*x^3)*exp(x))/3. (End)
|
|
MATHEMATICA
|
CoefficientList[Series[x*(1 + x)*(1 + 3*x^2)/(1 - x)^4, {x, 0, 50}], x]
|
|
PROG
|
(Maxima) a[0] : 0$ a[n] := (4*n^3 - 12*n^2 + 20*n - 9)/3$ makelist(a[n], n, 0, 50); /* Martin Ettl, Oct 21 2012 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Definition replaced by polynomial - The Assoc. Eds. of the OEIS, Aug 10 2010
|
|
STATUS
|
approved
|
|
|
|