login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133252
Partial sums of A006000.
1
1, 5, 17, 45, 100, 196, 350, 582, 915, 1375, 1991, 2795, 3822, 5110, 6700, 8636, 10965, 13737, 17005, 20825, 25256, 30360, 36202, 42850, 50375, 58851, 68355, 78967, 90770, 103850, 118296, 134200, 151657, 170765, 191625, 214341, 239020, 265772
OFFSET
0,2
COMMENTS
Prime for a(1) = 5, a(2) = 17, then never again?
FORMULA
a(n) = Sum_{i=0..n} A006000(i).
a(n) = Sum_{i=0..n} (i+1)*(i^2+i+2)/2.
a(n) = ((n^4+2*n^3+n^2)/4+(2*n^3+3*n^2+n)/3+(3*n^2+3*n)/2+2*n)/2+1.
G.f.: -(2*x^2 + 1) / (x-1)^5. - Colin Barker, Apr 28 2013
a(n) = (n+1)*(n+2)*(3*n^2+5*n+12)/24. - Alois P. Heinz, Apr 28 2013
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 21 2024
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 17, 45, 100}, 40] (* Harvey P. Dale, Sep 15 2022 *)
CROSSREFS
Cf. A006000.
Sequence in context: A190969 A099451 A174794 * A299335 A247618 A269962
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 19 2007
STATUS
approved