login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269962
Start with a square; at each stage add a square at each expandable vertex so that the ratio of the side of the squares at stage n+1 and at stage n is the golden ratio phi=0.618...; a(n) is the number of squares at n-th stage.
5
1, 5, 17, 45, 105, 237, 537, 1229, 2825, 6493, 14905, 34189, 78409, 179837, 412505, 946221, 2170473, 4978653, 11420025, 26195213, 60086537, 137826493, 316146457, 725176813, 1663410601, 3815531165, 8752065209, 20075486925, 46049151561, 105627543165
OFFSET
1,2
COMMENTS
The ratio phi=0.618... is chosen so that from the fourth stage on some squares overlap perfectly. The figure displays some kind of fractal behavior. See illustration.
FORMULA
a(1)=1, for n>=1, a(n) = 2*A269963(n) + 2*A269963(n-1) - 1.
Linear non-homogeneous recurrence relation:
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) + 2*a(n-4) + 2*a(n-5) + 4.
Linear homogeneous recurrence relation:
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) + 2*a(n-4) - 2*a(n-5).
G.f.: x*(1+x)*(1+2*x^2-2*x^3) / ((1-x)*(1-3*x+2*x^2-2*x^4)). - Colin Barker, Mar 09 2016
MATHEMATICA
RecurrenceTable[{a[n + 1] ==
4 a[n] - 5 a[n - 1] + 2 a[n - 2] + 2 a[n - 3] - 2 a[n - 4],
a[1] == 1, a[2] == 5, a[3] == 17, a[4] == 45, a[5] == 105}, a, {n,
1, 30}]
RecurrenceTable[{a[n + 1] ==
2 a[n] + a[n - 1] - 2 a[n - 2] + 2 a[n - 3] + 2 a[n - 4] + 4,
a[1] == 1, a[2] == 5, a[3] == 17, a[4] == 45, a[5] == 105}, a, {n,
1, 30}]
PROG
(PARI) Vec(x*(1+x)*(1+2*x^2-2*x^3)/((1-x)*(1-3*x+2*x^2-2*x^4)) + O(x^50)) \\ Colin Barker, Mar 09 2016
CROSSREFS
Cf. A247618.
Auxiliary sequences: A269963, A269964, A269965.
Sequence in context: A133252 A299335 A247618 * A048612 A320554 A218135
KEYWORD
nonn,easy
AUTHOR
Paolo Franchi, Mar 08 2016
STATUS
approved