login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048612
Find smallest pair (x,y) such that x^2-y^2 = 11...1 (n times) = (10^n-1)/9; sequence gives value of y.
4
0, 5, 17, 45, 115, 67, 2205, 2933, 166667, 44445, 245795, 6667, 132683733, 4444445, 2012917, 23767083, 2680575317, 666667, 555555555555555555, 83053525, 3263104267, 12488376483, 5555555555555555555555, 66666667, 2952525627555
OFFSET
1,2
COMMENTS
Least solutions for 'Difference between two squares is a repunit of length n'.
REFERENCES
David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, p. 119. ISBN 0-14-026149-4.
FORMULA
a(n) = (A033677((10^n-1)/9)-A033676((10^n-1)/9))/2. - Chai Wah Wu, Apr 05 2021
EXAMPLE
For n=2, 6^2 - 5^2 = 11.
MATHEMATICA
s = Flatten[Table[r = (10^i - 1)/9; d = Divisors[r]; p = d[[Length[d]/2]]; Solve[{x - y == p, x + y == r/p}, {y, x}], {i, 2, 56}]]; Prepend[Cases[s, Rule[y, n_] -> n], 0]
Join[{0}, Table[y/.Solve[{x>0, y>0, x^2-y^2==FromDigits[PadRight[{}, n, 1]]}, {x, y}, Integers][[1]], {n, 2, 30}]](* Harvey P. Dale, Jun 12 2018 *)
PROG
(Python)
from sympy import divisors
def A048612(n):
d = divisors((10**n-1)//9)
l = len(d)
return (d[l//2]-d[(l-1)//2])//2 # Chai Wah Wu, Apr 05 2021
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Corrected and extended by Patrick De Geest, Jun 15 1999
More terms from Hans Havermann, Jul 02 2000
Offset corrected by Chai Wah Wu, Apr 05 2021
STATUS
approved