login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048610
Smallest number that is the sum of two positive squares in >= n ways.
(Formerly M2172)
11
2, 50, 325, 1105, 5525, 5525, 27625, 27625, 71825, 138125, 160225, 160225, 801125, 801125, 801125, 801125, 2082925, 2082925, 4005625, 4005625, 5928325, 5928325, 5928325, 5928325, 29641625, 29641625, 29641625, 29641625, 29641625, 29641625
OFFSET
1,1
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 50, p. 19, Ellipses, Paris 2008.
J. Meeus, Problem 1375, J. Rec. Math., 18 (No. 1, 1985), p. 70.
Problem 590, J. Rec. Math., 11 (No. 2, 1978), p. 137.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
EXAMPLE
2 = 1^2 + 1^2; 50 = 1^2 + 7^2 = 5^2 + 5^2; 325 = 1^2 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2.
MATHEMATICA
(* Assuming a(n) multiple of 1105, from 1105 on, to speed up computation *) twoSquaresR[n_] := twoSquaresR[n] = With[{r = Reduce[0 < x <= y && n == x^2 + y^2, {x, y}, Integers]}, If[r === False, 0, Length[{x, y} /. {ToRules[r]}]]]; a[n_] := a[n] = For[an = a[n - 1], True, an = If[an < 1105, an + 1, an + 1105], If[ twoSquaresR[an] >= n, Return[an]]]; a[1] = 2; Table[ Print[a[n]]; a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 22 2012 *)
nn = 10^6; t2 = Table[0, {nn}]; n2 = Floor[Sqrt[nn]]; Do[r = a^2 + b^2; If[r <= nn, t2[[r]]++], {a, n2}, {b, a, n2}]; t = {}; n = 1; While[a = Position[t2, _?(# >= n &), 1, 1]; a != {}, AppendTo[t, a[[1, 1]]]; n++]; t (* T. D. Noe, Jun 22 2012 *)
CROSSREFS
KEYWORD
nonn,nice
STATUS
approved