login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217876
Triangle read by rows: distribution of adjacent transpositions in involutions.
2
1, 1, 1, 1, 2, 2, 5, 4, 1, 13, 10, 3, 37, 29, 9, 1, 112, 88, 28, 4, 363, 288, 96, 16, 1, 1235, 984, 336, 60, 5, 4427, 3555, 1248, 240, 25, 1, 16526, 13334, 4764, 956, 110, 6, 64351, 52252, 19023, 3984, 505, 36, 1, 259471, 211646, 78101, 16836, 2261, 182, 7
OFFSET
0,5
COMMENTS
T(n,k) is the number of involutions on [n] containing exactly k adjacent transpositions. The Mathematica recurrence below is based on considerations and manipulations similar to those in the Stadler and Haslinger reference for the case k=0 (Theorem 5 in Section 3).
It appears that each column is a palindromic linear combination of the entries a[n] := T(n,0) in column 0:
T(n,1) = a[n] - a[n-1] + a[n-2],
T(n,2) = (a[n] - 2 a[n-1] + 2 a[n-2] - 2 a[n-3] + a[n-4])/2,
T(n,3) = (a[n] - 3 a[n-1] + 3 a[n-2] - 4 a[n-3] + 3 a[n-4] - 3 a[n-5] + a[n-6])/6,
T(n,4) = (a[n] - 4 a[n - 1] + 4 a[n - 2] - 4 a[n - 3] + 4 a[n - 4] - 4 a[n - 5] + 4 a[n - 6] - 4 a[n - 7] + a[n - 8])/24,
T(n,5) = (a[n] - 5 a[n - 1] + 5 a[n - 2] + 4 a[n - 5] + 5 a[n - 8] - 5 a[n - 9] + a[n - 10])/120.
It appears that each diagonal is a polynomial function: topmost entries are 1, second entries are k+1, third entries are (k+1)^2, fourth entries are 1/3 (1 + k) (2 + k) (3 + 2 k), fifth entries are 1/12 (1 + k) (2 + k) (30 + 23 k + 5 k^2), sixth entries are 1/60 (1 + k) (2 + k) (3 + k) (130 + 77 k + 13 k^2), seventh entries are 1/180 (1 + k) (2 + k) (3 + k) (1110 + 821 k + 210 k^2 + 19 k^3).
Conjecture: The asymptotic distribution of adjacent transpositions in involutions is Poisson with mean 1.
REFERENCES
P. Stadler and C. Haslinger, RNA structures with pseudo-knots: Graph theoretical and combinatorial properties, Bull. Math. Biol. (1999) Vol 61 Issue 3, 437-67.
LINKS
EXAMPLE
Triangle starts at n=0, k=0:
..1
..1
..1 ...1
..2 ...2
..5 ...4 ...1
.13 ..10 ...3
.37 ..29 ...9 ...1
112 ..88 ..28 ...4
363 .288 ..96 ..16 ...1
T(5,2) = 3 counts, in cycle form, {(12),(34),(5)}, {(12),(3),(45)}, and {(1),(23),(45)} because each contains 2 adjacent transpositions.
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1, `if`(n in s,
b(n-1, s minus {n}), expand(b(n-1, s)+add(`if`(i in s, 0,
`if`(i=n-1, x, 1)*b(n-1, s union {i})), i=1..n-1))))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, {})):
seq(T(n), n=0..14); # Alois P. Heinz, Mar 10 2014
MATHEMATICA
Clear[T]; (* T(n, k, j) is the number of involutions on [n] containing k adjacent transpositions but not the adjacent transposition (j, j+1) *)
T[n_, k_] /; k < 0 || k > n/2 := 0;
T[0, 0] = 1; T[1, 0] = 1; T[2, 0] = 1;
T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 2, k - 1] - T[n - 3, k] - T[n - 4, k - 1] + T[n - 4, k] + Sum[T[n - 2, k, j], {j, 0, n - 2}];
T[n_, k_, j_] /; n <= 1 && k >= 1 := 0;
T[n_, k_, j_] /; k < 0 := 0;
T[n_, k_, j_] /; 0 <= n <= 1 && k == 0 := 1;
T[n_, k_, j_] /; j <= 0 || j >= n := T[n, k];
T[n_, k_, j_] /; n >= 2 && k >= 0 := T[n, k, j] = T[n - 2, k, j - 1] + T[n, k] - T[n - 2, k] - T[n - 2, k - 1, j - 1];
Table[T[n, k], {n, 0, 15}, {k, 0, n/2}]
CROSSREFS
Column k=0 is A170941. Row sums are A000085.
Sequence in context: A356891 A135281 A068465 * A209771 A209751 A275381
KEYWORD
nonn,tabf
AUTHOR
David Callan, Oct 14 2012
STATUS
approved