login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217872
a(n) = sigma(n)^n.
12
1, 9, 64, 2401, 7776, 2985984, 2097152, 2562890625, 10604499373, 3570467226624, 743008370688, 232218265089212416, 793714773254144, 21035720123168587776, 504857282956046106624, 727423121747185263828481, 2185911559738696531968, 43567528752021332753202420081
OFFSET
1,2
COMMENTS
Here sigma(n) = A000203(n) is the sum of the divisors of n.
Compare to A023887(n) = sigma(n,n).
LINKS
FORMULA
Logarithmic derivative of A156217.
From Amiram Eldar, Nov 16 2020: (Start)
Sum_{n>=1} 1/a(n) = A215140.
Sum_{n>=1} (-1)^(n+1)/a(n) = A215141. (End)
EXAMPLE
L.g.f.: L(x) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 6^5*x^5/5 + 12^6*x^6/6 +...
where exponentiation yields the g.f. of A156217:
exp(L(x)) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 2273*x^5 + 502568*x^6 +...
MATHEMATICA
Table[DivisorSigma[1, n]^n, {n, 1, 20}] (* Amiram Eldar, Nov 16 2020 *)
PROG
(PARI) {a(n)=sigma(n)^n}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 01 2012
STATUS
approved