Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Nov 16 2020 03:07:27
%S 1,9,64,2401,7776,2985984,2097152,2562890625,10604499373,
%T 3570467226624,743008370688,232218265089212416,793714773254144,
%U 21035720123168587776,504857282956046106624,727423121747185263828481,2185911559738696531968,43567528752021332753202420081
%N a(n) = sigma(n)^n.
%C Here sigma(n) = A000203(n) is the sum of the divisors of n.
%C Compare to A023887(n) = sigma(n,n).
%H Paul D. Hanna, <a href="/A217872/b217872.txt">Table of n, a(n) for n = 1..200</a>
%F Logarithmic derivative of A156217.
%F From _Amiram Eldar_, Nov 16 2020: (Start)
%F Sum_{n>=1} 1/a(n) = A215140.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = A215141. (End)
%e L.g.f.: L(x) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 6^5*x^5/5 + 12^6*x^6/6 +...
%e where exponentiation yields the g.f. of A156217:
%e exp(L(x)) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 2273*x^5 + 502568*x^6 +...
%t Table[DivisorSigma[1, n]^n, {n, 1, 20}] (* _Amiram Eldar_, Nov 16 2020 *)
%o (PARI) {a(n)=sigma(n)^n}
%o for(n=1,20,print1(a(n),", "))
%Y Cf. A000203, A023887, A156217, A215140, A215141.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Nov 01 2012