login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into distinct divisors > 1 of n.
8

%I #23 Nov 18 2021 12:13:36

%S 1,0,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,3,1,1,1,

%T 1,1,6,1,1,1,2,1,2,1,1,1,1,1,6,1,1,1,1,1,3,1,2,1,1,1,19,1,1,1,1,1,3,1,

%U 1,1,1,1,16,1,1,1,1,1,2,1,4,1,1,1,14,1

%N Number of partitions of n into distinct divisors > 1 of n.

%C a(A136446(n)) > 1.

%H Alois P. Heinz, <a href="/A211111/b211111.txt">Table of n, a(n) for n = 0..10000</a> (terms n=1..1000 from Reinhard Zumkeller)

%e n=12: the divisors > 1 of 12 are {2,3,4,6,12}, there are exactly two subsets which sum up to 12, namely {12} and {2,4,6}, therefore a(12) = 2;

%e a(13) = #{13} = 1, because 13 is prime, having no other divisor > 1;

%e n=14: the divisors > 1 of 14 are {2,7,14}, {14} is the only subset summing up to 14, therefore a(14) = 1.

%p with(numtheory):

%p a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):

%p b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,

%p b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))

%p end; forget(b):

%p b(n, nops(l))

%p end:

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Nov 18 2021

%t a[n_] := Count[IntegerPartitions[n, All, Divisors[n] // Rest], P_ /; Reverse[P] == Union[P]];

%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 18 2021 *)

%o (Haskell)

%o a211111 n = p (tail $ a027750_row n) n where

%o p _ 0 = 1

%o p [] _ = 0

%o p (k:ks) m | m < k = 0

%o | otherwise = p ks (m - k) + p ks m

%Y Cf. A211110, A033630, A027750.

%Y Cf. A065205, A136446.

%K nonn

%O 0,13

%A _Reinhard Zumkeller_, Apr 01 2012

%E a(0)=1 prepended by _Alois P. Heinz_, Nov 18 2021